
wo, ! !L', L . CCWXI (

JULY 1988 TRAC - F- TM - 0988

ACN 16306

FORT LEAVENWORTH IMPROVED KELLNER (FLIK)
GRAPHICS INTERFACE: GENERAL OVERVIEW

00

C)

DTIC

Fort Leavenworth

CkH

U3 ARMY

TRADOC ANALYSIS COMMAND.FORT LEAVTNWOrn14

(TRAC.FLVN)

OPERATIONG DIM CTORATE

FOfW LEAVENWOnTIi, KANSAS 80027

Technical Memorandum TRAC-F-TM-0988
July 1988

TRADOC Analysis Command-Fort Leavenworth (TRAC-FLVN)
Operations Directorate, Technology Applications Branch

Fort Leavenworth, Kansas 66027-5200

FORT LEAVENWORTH IMPROVED KELLNER (FLIK)

GRAPHICS INTERFACE: GENERAL OVERVIEW

by

Tim Daniels

ACN 16306

The views, opinions, and/or findings contained in this report are
not to be construed as an official Department of the Army
position, policy, or decision unless so designated by authorized
documents issued and approved by the Department of the Army.

(

Al l

UNCLASS IFIED
,ECURITY CLASSIFICATION OF THIS PAGE

SForm Approved
REPORT DOCUMENTATION PAGE OMB No. 070o-0188

Ia. REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS

2a. SECURITY CASSIFICATION AUTHORITY 3. DISTRIBUTION /AVAIABILITY OF REPORT

Approved for Public Release

2b. DECLASSIFICATION I DOWNGRADING SCHEDULE Distribution Unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

TRAC-F-TM-0988

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(if appoikable)

TRAC-FLVN ATRC-FOC

6c. ADDRESS (City, State, and ZiP Code) 7b. ADDRESS (City, State, and ZIP Code)
Director, TRAC-FLVN

ATTN: ATRC-FOC-T)

Fort Leavenworth, KS 66027-5200

go. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

BC. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK IWORK UNIT
ELEMENT NO. NO. NO. 1ACCESSION NO.

11. TITLE (include Seculft Clas.ification)

Fort Leavenworth Improved Kellner (FLIK) Graphics Interface General Overview

12. PERSONAL AUTHOR(S)
Timothy Daniels

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT

Final FROM Jan 87 TOOct 8 1988 October 76

16. SUPPLEMENTARY NOTATION

17, COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessry and identify by block number)

FIELD GROUP SUB-GROUP

ABSTRACT (Continue on revern if necessary and identify by block number)

This paper presents a survey of the Fort Leavenworth Improved Kellner (FLIK) graphics

interface system. The survey covers the FLIK developers, the origins of FLIK, how to use

FLIK, what problems it solves for applications, problems that remain, enhancements over

previous interface packages, and a development history. This paper also contains appendices

with more detailed information about some topics discussed briefly within the survey.

20. OISTRISUTION /AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CASSIFICATION
r- UNCLASSIFIEDANLIMITED C-3 SAME AS RPT. E3 DTIC USERS

2Z. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL

00 Form 1473, JUN 16 jswodtlbmare obsoee. SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

ACKNOWLEDGEMENTS

Al Kellner, TRADOC Analysis Command, White Sands Missile
Range, (TRAC-WSMR) wrote the Kellner graphics packages. He built
a thorough, well designed graphics package. Howard de St.
Germain, TRAC-WSMR, made changes to at least one version of the
Kellner package to tailor it to certain Ramtek hardware.

The Technology Applications Branch, TRADOC Analysis Command,
Fort Leavenworth (TRAC-FLVN), created the Fort Leavenworth
Improved Kellner (FLIK) package. Tim Daniels did the majority of
the effort in merging Kellner code into FLIK, writing the FLIK
station package, OMNI, and the display list software. Pete
Kaeding also worked on development of FLIK modules.

Several people at TRAC-FLVN and at TRAC-WSMR extensively
tested FLIK in many varied environments:

o VIC input preprocessor (VIP): Pete Kaeding, Mike Chenault,

Jim Lankford and Jim Williams.

o The Fort Lewis Weapons-effects package: Pete Kaeding.

o Vector-In-Commander (VIC) version 1.2 interactive game:
Mike Hannon.

o VIC version 1.2 PLAYBACK: Pete Kaeding, Mike Hannon, and
Terry Gach.

o Graph-Cap package (A pop-up/pull-down menuing and
point-data display systems, by Pete Kaeding): Pete Kaeding.

o Color slide package for interactive color slide generation,
by Mike Chenault: Mike Chenault.

Atr)

Accession For
NTMS CPA&I

J~ IY1.at, -o____

J - c i a t '

'C1'f -. oci

TABLE OF CONTENTS
Page

TITLE PAGE ...i

DD Form 1473, Report Documentation Page ii

ACKNOWLEDGEMENTS ... iii

TABLE OF CONTENTS ... iv

ABSTRACT ... v

MAIN REPORT

Introduction ... 1

Problems solved ... 2

Conversion from Kellner to FLIK 4

Lingering hardware considerations 9

Higher efficiency .. 10

New Features .. 11

Known FLIK limitations 14

Development order .. 15

Summary ... 18

APPENDIX A TABLET POLLING APPLICATIONS A-i

APPENDIX B HOST MODE IMAGE SETTING B-i

APPENDIX C GET AVAILABLE BIT-PLANES C-1

APPENDIX D IMAGE SIZE IN APPLICATIONS D-1

APPENDIX E SIMULTANEOUS IMAGE TRANSFER PROBLEM E-I

APPENDIX F METAFILE CONTROL F-I

APPENDIX G DISPLAY LISTS G-1

DISTRIBUTION LIST

iv

ABSTRACT

This paper presents a survey of the Fort Leavenworth Improved
Kellner (FLIK) graphics interface system. The survey covers the
PLIK developers, the origins of FLIK, how to use FLIK, what
problems it solves for applications, problems that remain,
enhancements over previous interface packages, and a development
history. This paper also contains appendices with more detailed
information about some topics discussed briefly within the
survey.

V

FORT LEAVENWORTH IMPROVED KELLNER (FLIK) GRAPHICS INTERFACE:
GENERAL OVERVIEW

1. Introduction. This document explains the development of the
FLIK graphics package and how it impacts on other efforts of
TRADOC Analysis Command (TRAC) and other Department of Defense
(DOD) installations.

a. FLIK is a creation of the Technology Applications Branch
(TAB), Computer Systems pivision, TRADOC Analysis Command, Fort
Leavenworth (TRAC-FLVN).- The FLIK graphics interface software
package facilitates an application's use of Ramtek graphics
systems by converting user graphics requirements to host commands
for the Ramtek. Ramtek systems contain a graphics processor that
converts host commands into graphics data stored in a bitmap, a
large random-access memory (RAM). That bitmap forms a
three-dimensional Cartesian coordinate system. A video board
maps all memory bits at the same (X,Y) coordinate into a unique
pixel, a specific point on the monitor screen surface. The size
of the bitmap is exactly sufficient for the video board to fill
the entire screen with a display of these pixels. The Z
coordinate splits the bitmap into bit-planes. Each bit-pane
spans the entire screen but has only one bit per pixel. The
video board can combine data from several bit-planes to co n1
each pixel's color and/or to overlay on the screen a picture
stored in one set of bit-planes over a picture stored in another
set (e.g.: symbols over a terrain map). tser applications such
as battle simulations, pre- and post-processors, terrain map
displays, slide generation packages, and satellite data display
systems all benefit from graphics packages such as FLIK.

b. Before FLIK, several other graphics interface packages
throughout DOD had the same purpose as FLIK. Al Kellner at
TRADOC Analysis Command, White Sands Missile Range (TRAC-WSMR) is
the exclusive author of the Kellner graphics package. Each
Kellner package is thorough in the exercise of the Ramtek
graphics and interactive capabilities. Due to their clean design
and wide applicability, Kellner packages are used at several DOD
schools.

c. Each Kellner package was tailored to a specific
VAX/Ramtek hardware configuration. The package made only partial
adjustments for the specific Ramtek hardware used. As a result,
the Kellner packages require the user to tailor the applications
software to fit a certain Kellner package and associated hardware
configuration.

(1) The tailoring requirement for each Kellner package
became a problem for some users because it locked their
applications into a certain type of Ramtek hardware, making them
nontransportable. Nontransportability has been a technical

1

impediment to software exchanges among various DOD schools and
centers. Had there been only one type of Ramtek requiring a
single Kellner package, transportability would not been a
problem.

(2) FIIK makes virtually all adjustments required by
varying Ramtek hardware configurations. It leaves the
application virtually free of any such requirements and permits
DOD application products to be exchanged among hardware suites
and installations.

(a) Transportability is the main benefit of the FLIK
package for Kellner users. TAB has even combined applications
made for different Ramteks into a single executable and has
successfully run that combination with several Ramtek suites at
TRAC-FLVN.

(b) For example, we can now run the Vector-in-Commander
(VIC) battle simulation version 1.2 on all Ramtek hardware at
TRAC-FLVN; before it ran only on TRAC-WSMR-type Ramteks. Also,
the VIC Input Processor (VIP) now runs on all Ramteks at
TRAC-WSMR and TRAC-FLVN. The Fort Lewis weapons-effects software
(designed for a different Ramtek than was VIP) now runs in a
combined executable with VIP on all Ramteks at TRAC-FLN. The
VIC playback software now runs on virtually all hardware at
TRAC-FLVN. CASTFOREM from TRAC-WSMR's MicroVax now draws
graphics at TRAC-FLVN on the quite different Ramteks connected to
the VAX 11/785 machines.

d. FLIK is a fusion and an upgrade of several Kellner
graphics packages. It contains all the functions of the older
Kellner packages, virtually isolates the user from Ramtek
dependency, and provides several additional features. FLIK has
evolved for the last 18 months, and its use is becoming more
widespread. FLIK is used at TRAC-WSMR, and at Combat Analysis
Agency (CAA). TRAC-WSMR plans to distribute FLIK with its latest
release of VIP to approximately 35 users DOD-wide.

2. Problems Solved. Previously, the user had to tailor
application software to solve problems resulting from varying
Ramtek hardware parameters. This resulted in a separate set or
subset of applications software for each possible type of Ramtek
configuration. One solution was to make the application "smart"
by branching on a Ramtek "type," entered by the user at run time.
This made the application vulnerable to additional "types" of
Ramtek hardware. In any case, the application had to link to the
correct graphics library specially tailored to one type of Ramtek
hardware. This always resulted in separate executables, one for
each Ramtek with which the user planned to run. FLIK has only
one such library to link to, intended for all types of Ramtek

2

systems. With FLIK, the user has virtual freedom from Ramtek
hardware considerations. As a result, the user does not need to
keep multiple sets of applications, nor branch frequently based
on hardware parameters. FLIK provides the following solutions:

a. Linking. The user has a single link procedure not
dependent on Ramtek hardware.

b. Image resolution. The user has virtual freedom from
Ramtek resolution (low or high), except during image transfer.
This permits a user to write most application code having integer
coordinates and text sizes based on one Ramtek resolution, then
compile and link with the FLIK package. FLIK lets the user run
the resulting single executable application program on Ramtek
hardware having either resolution, low or high. However, during
image transfers, FLIK does not adjust two resolution-dependent
parameters. It leaves those adjustments for the user to do.
These parameters are the refresh memory coordinates for the
opposite corners of the rectangular transfer area, and the count
of the number of pixels to transfer to the actual Ramtek
resolution. FLIK expects the application to branch on the image
resolution when determining those values.

c. Color format. Ramtek hardware uses three digital to
analog converters (DACs) to output the red/green/blue
color-shading combinations to each Ramtek monitor screen. Ramtek
Corporation can configure its hardware with sets of either four
or eight bit DACs. The user provides a list of color definitions
for the shadings desired. Each color definition in that list is
the input values to the red/green/blue DACs, represented as
either three four-bit values, or three eight-bit values. This
would make the host color list format hardware dependent. But,
with FLIK, the user's color list has total freedom from such
dependencies. That allows one executable of an application that
defines colors in one of the two DAC size formats to run equally
well with Ramteks having either DAC size.

d. Station-selection parameters. The user has total freedom
from identifying and referencing the tablets, cursors, and color
tables associated with the Ramtek station on which an application
runs. If an application chooses an incorrect peripheral or color
table, FLIK prints an error message, finds the correct
peripheral, and proceeds.

e. Color levels. Applications software that defines color
overlay levels must branch on the number of Ramtek bit-planes
available. FLIK provides this information at run time. FLIK
frees the user from deciding the association between color levels
and Ramtek bit-planes and memory control processors (MCPs).

3

f. Special video boards. FLIK makes the type of video board
transparent to the user. The user need not do any special
initialization of the newer V6 boards. For the specialized V6B
board there are FLIK options available to an application to take
advantage of the colored blinking cursor options.

g. Image pixel-bits. At run time, FLIK provides to the
application software information on the number of bit-planes
available at the current station. Any application that
manipulates images must branch on that information when defining
the image pixel buffer size or contents. Also, FLIK establishes
internally a default relation between host pixel bits and Ramtek
bit-planes at the current station. Using that relation, FLIK
frees the application software from the details involved during
image transfer of pixels between host memory buffers and Ramtek
bit-planes. When the user defines a list of color levels FLIK
allocates those color levels to certain Ramtek bit-planes, and
changes its internal relation between host pixel bits and Ramtek
bit-planes to include only those Ramtek bit-planes used.

3. Converting from Kellner to FLIK. Converting an application
from Kellner to FLIK requires a few minor code changes in the
application program and a minor change in the linking procedure.
Even though these changes are minor, they are essential.

a. User expectations versus Ramtek hardware. One of the
main services FLIK provides is the reconciliation of a mismatch
between an application written for one Ramtek suite and the
Ramtek suite currently in use. This allows portability of
graphics applications among Ramtek suites. To solve this
potential mismatch, FLIK requires the type of Ramtek the
application was written for (user expectations) and the type of
Ramtek in use. The latter information comes from the station
file and the Ramtek itself. The former comes from the user
during FLIK initialization.

b. Initialization. All applications switching from Kellner
to FLIK graphics packages must change their argument list in the
call to KRMINIT.

(1) The Kellner KRMINIT call was:

CALL KRMINIT (IDUM, ICRT)

where IDUM did nothing and ICRT was the integer station number
(greater than or equal to one).

(2) The FLIK KRMINIT call is:

CALL KRMINIT (IXRES, IYRES, IDAC, ICRT)

4

F

where IXRES and IYRES are the "expected" Ramtek resolution (X and
Y), IDAC is the "expected" DAC size, and ICRT is the integer
station number, as with the Kellner KRMINIT.

(3) The "expected" Ramtek resolution and DAC size
describe the type of Ramtek the application was originally
written for when used with the Kellner packages. FLIK requires
that information to later adjust integer coordinates, text size,
and color formats.

c. Combining applications. Ignore this when working with
individual applications packages. It is a FLIK enhancement that
allows two or more graphics applications originally written for
different Ramtek hardware to be combined into one shell. As the
shell transfers control among the various merged packages, it
resets the Ramtek "expectations" known by FLIK to match those of
the current application. You initialize only once with KRMINIT,
when some application under the shell first needs a Ramtek. For
every change to a different application within the shell, you
reset the Ramtek "expectations" with a call to KUSERMODE. This
concept appears in the following code illustration.

PROGRAM SHELL
CC This program includes applications
CC software built originally for
CC different Ramtek suites.

IXRES1 - 640
IYRESI = 512
IDACl = 4
IXRES2 = 1280

IYRES2 = 1024
IDAC2 = 8

CC
IXRES3 = 640
IYRES3 = 512
IDAC3 = 8

CC FLIK initialization, one time only.
CALL KRMINIT (IXRES1, IYRESI, IDAC1, IUNCRTL)
CALL APPLIC1

CC Notify FLIK that software to follow
CC was originally written for high res
CC with eight-bit DACs.

CALL KUSERMODE (IXRES2, IYRES2, IDAC2)
CALL APPLIC2

CC Notify FLIK that software to follow
CC was originally written for low res
CC with eight-bit DACs.

CALL KUSERMODE (IXRES3, IYRES3, IDAC3)
CALL APPLIC3

CC Notify FLIK that software to follow

5

CC was originally written for low res
CC with four-bit DACs.

CALL KUSERMODE (IXRESl, IYRESl, IDACi)
CALL APPLIC1

CC

STOP
END

Note: The three arguments for KUSERMODE are just like the
first three arguments in KRMINIT: the expected Ramtek resolution
(X and Y) and the expected DAC size.

d. Tablet inputs. FLIK normally will only return from a
tablet read when the user pushes a button. Some applications
using the Kellner package rely on an immediate return so they can
set up a polling loop. This loop will fail in FLIK. To make it
work again you must change the old Kellner call to KRTABBUT or
KRTABST inside the loop to a FLIK call to either KRTABBUTSEC or
KRTABSTSEC, or KTABLET (the latter is easiest.) The modules
KRTABBUT and KRTABST now work only in nonpolling situations, and
do so more efficiently than before. Refer to Appendix A for an
example of changing an old application to still poll with FLIK.

e. Image transfers. Applications using the old Kellner
packages' image transfer modules KWIMAGE and KRIMAGE supplied a
first argument that was not used by those modules. The
documented intent of the first argument was to set the image
transfer mode as follows:

C IHMODE: = 0, PLANES 0-15 ARE TRANSFERRED C
C = 1, PLANES 0-7 ARE TRANSFERRED C
C = 2, PLANES 8-15 ARE TRANSFERRED C

(1) In tailoring Kellner packages to a Ramtek hardware
configuration, the implementers of Kellner disabled this first
argument. Internal to the Kellner software, they defined a
hard-wired set of image transfer modes which replaced the
stubbed-out argument. There was one such mode hard-wired for
each possible station on that Ramtek configuration. At run time,
during initialization, the user would select a station. Later,
when transfering images, the hard-wired mode for that station
would determine the correct bit-planes to participate in the
image transfer to or from that already-selected station. To
match the Ramtek hardware and the Kellner package used, the users
had to write their application to manipulate images having either
eight or 16 bits per image pixel.

(2) With FLIK, the situation has changed. The first
argument in the call to KWIMAGE and KRIMAGE now functions as
documented. It does two things: it describes the pixel format
of the users' image data (either eight or 16 bits per pixel) and,

6

if eight bits per pixel, it has the potential to control which
bit-planes of a station participate in the image transfer (either
lower eight or upper eight bit-planes.)

(3) When changing old applications from Kellner to FLIK,
you must check all the calls to KWIMAGE and KRIMAGE. Be sure
that the first argument, now active, fits the real situation in
the software. Ensure that applications working with 16-bit
images always has a zero as the first argument in these calls.
Ensure that applications working with eight bit images always
have either a one or two as the first argument in these calls.
(Usually in the latter case you will use a one, not a two.) In
most Kellner packages since the first argument was disabled,
users rarely bothered to route their images to the upper eight of
a set of 16 planes available to one station. It is only very
recently that any Kellner applications have been used on Ramteks
where 16 planes are available. Those Ramteks have the new V6B
video boards.

(4) In some cases, Kellner implementers added extra
modules, such as KWIMAGE 8600 V and KRIMAGE 8600_V, that function
similarly to KWIMAGE and KRIMAGE. By calling one of these added
modules, a Kellner user could choose between eight and 16 bit
images. When changing such software to work with FLIK, you must
change all calls back to the original KWIMAGE and KRIMAGE but set
the first argument correctly. See Appendix B for an example of
such an application program change.

f. Correction of application errors. Applications software
usually contains one erroneous assumption and one error
pertaining to tablet input.

(1) Erroneous assumption. Often when users work with
tablet and cursor input, they rely on the cursor's "enter" flag
when their Ramtek has only tablets, and not cursor controllers
(such as joystick or trackball) connected. There is also a
Ramtek mouse available, but we are not certain how Ramtek treats
it.

(a) The Ramtek firmware is such that this cursor "enter"
flag never lights up when a tablet puck button is pushed. Cursor
coordinates follow the puck, but the cursor "enter" flag does
not. Only when your Ramtek has a cursor controller instead of a
tablet will the cursor "enter" flag be valid. We challenge
anyone to find this fact in the Ramtek Software Reference Manual.

(b) In Appendix A, we note an example of this same
erroneous assumption. It appears in the line of code that
assigned the IENTER value returned from KRCURS call to the IBUTN
value.

7

(2) Code error. There is an error in application code
that has proliferated over the years. It does not appear when
using Kellner but makes the tablet go dead when using FLIK. The
error was in setting the conditions under which a tablet
interrupt occurs. Kellner software does not rely on tablet
interrupts, so the application error never had an effect. FLIK
does rely on tablet interrupts, and the tablet will fail to
respond after the application executes the error. The error is
when an application calls KWTABST with a status of ISTAT which is
set to a hex value usually of '101', or '201', '301', '401',
'501', '601', or '701', (usually it is a '201' or '701'). There
is a missing zero in the hex constant. The left-most digit
should be the first of FOUR digits, not three. This error means
that no tablet-status bits are set to cause a Ramtek interrupt as
the result of a button press or button release, or puck movement
while one or more buttons are pressed. You must check the ISTAT
value in all calls to KWTABST when converting old applications
from Kellner to FLIK. In such cases, our experience has been
that when a tablet goes dead, this erroneous ISTAT constant
invariably has been the cause.

4. Lingering hardware considerations. There are still a few
hardware-related considerations that the applications program
must prepare for. Most of these should be in the form of
branches in the application code. The application code can still
remain transportable by getting Ramtek information from FLIK at
run time, then branching on that information.

a. Color-level limitations. When defining color levels with
FLIK module KOVRDEF, the total number of Ramtek planes assigned
must stay at or below the number of planes available on the
current Ramtek station in use. An application can get this
information by calling module RMSTNPIXBITS in the station
software. If the user tries to use too many planes, FLIK will
print an error message. For example, if the current Ramtek
station has eight bit-planes and a user asks for two overlay
levels with five planes each (total of 10 planes) this is an
error. See Appendix C for an example of how to get the number of
available planes.

b. Image pixel-bits limitations. The user should be aware
that in transferring images, FLIK will only transfer, at maximum,
as many bits per host pixel as there are Ramtek bit-planes
available at the current station. However, the user can elect to
transfer fewer bits per pixel than the maximum. For example, if
an application set aside 16 bits per pixel, and the current

* Ramtek station had 10 bit-planes available, and the user wrote an
image using a HOST-MODE-0 (16 bits per pixel) then FLIK would
only transfer the lower 10 bits in each host word to the correct
Ramtek bit-planes. If the application instead set aside eight
bits per pixel and the current Ramtek station still had 10

8

II

bit-planes available, and the application wrote images with a
HOST-MODE=l (eight bits per pixel) then FLIK would only transfer
the lower eight bits in each host word to the correct Ramtek
bit-planes.

c. Actual image size. Image transfers involve rectangular
areas of refresh memory, defined by two opposite corners. There
are two levels at which to represent image areas--abstract
(logical), and physical (actual). A logical representation
defines opposite corners proportional to the entire view. An
actual representation defines opposite corners in actual pixel
addresses in the refresh memory available on the Ramtek currently
in use. With images of the same actual physical pixel size
transferred into both low and high resolution Ramteks, the viewed
image on the low resolution system spans twice the proportional
width and height of the total screen, doubling the logical
abstract width and height of the low resolution image.
Conversely, with images of the same logical abstract proportional
size on both a low and a high resolution screen, the stored image
in the high resolution system must span twice the pixel width and
height in refresh memory, doubling the actual physical width and
height of the high resolution image. Applications often need to
maintain the same proportional abstract logical image sizes,
regardless of system resolution. See Appendix D for an example
of making an application do this by adjusting the actual image
size.

(1) The Kellner packages and FLIK force users to define
their image transfer areas with actual refresh memory pixel
dimensions. Therefore, for an application to correctly transfer
images with either low or high Ramtek resolution, that
application must make allowances for that resolution. Such
applications have several resolution-dependent factors on the
host side that FLIK cannot control, including the proper sized
buffer space and, if moving pictures to and from disk, a suitable
disk file and record format.

(2) Therefore, FLIK makes the refresh memory resolution
size available to the application via a call to KQWIN. After
calling KQWIN, the application can use the returned resolution
data when setting the following values:

o The actual location and size of the rectangular
transfer area.

o The choice of image buffer by size.

o The disk file and record formats for moving images to
and from host disk.

9

5. Higher efficiency. The FLIK graphics package is more
efficient than the original Kellner graphics package in the
following respects.

a. Tablet input. With FLIK, the user may now eliminate all
unnecessary Ramtek tablet polling. Previously, under all
conditions, a tablet read would always return immediately to the
application, even when no puck button was pushed. Most of the
time this is undesirable, since the application expects a
button-push. Now, the Ramtek normally returns to the application
only when a button is pushed. Note that FLIK still provides
polling capabilities for special cases such as pull-down menus.
This nonpolling reduces the system overhead on the host computer.
See Appendix A for additional information.

b. Faster imaging. FLIK provides two modules for writing
images to the Ramtek: the normal Kellner write image and a write
image with event flag. Write image with event flag only starts
an image transfer from host to the Ramtek but does not wait as
usual for the transfer to complete. Instead, it returns
immediately to the application program. The application must do
several write images to fill a screen. When moving a full screen
picture from disk to Ramtek, the application can use a double
buffering technique on these several partial screens of image.
This means that after reading the first partial picture from
disk, the application can start the write image of the current
partial picture and, while that write takes place, read the next
partial picture from disk. This almost halves the time to
display images.

c. Multistation imaging. TAB at TRAC-FLVN has identified a
problem with image displays. It occurs with both Kellner and
FLIK when each of two simultaneously running processes has
attached to different Ramtek stations driven by the same Ramtek
controller. Under those conditions, if both processes attempt to
move images from disk back to their respective Ramtek stations,
neither picture transfer completes. To solve this problem, we
have provided a new FLIK module called KWIMAGEEFN. Changing from
KWIMAGE to KWIMAGEEFN requires 11 words at the front of the image
buffer and a call to KWAIT afterward. See appendix E for
details.

6. New features. FLIK not only removes hardware-related burdens
from the user application and provides higher efficiency
operations, but also makes available some major new features.

a. Help libraries. For all the major sections of FLIK
software, we now have VAX VMS interactive HELP libraries
containing documentation on all the user-callable modules
available. These libraries were automatically generated from the
documentation in the software itself. Some additional

10

documentation has been added in the library for FLIK for
clarification. To use the libraries, you enter HELP_FLIK,
HELPDL, HELPRMSTN, and HELP-OMNI.

(1) HELP FLIK gives you a library describing all the FLIK
modules, arranged into subsets by their general function, such as
initialization, vector drawing, color control, display lists,
etc.

(2) HELP DL gives you access to information on the FLIK
display list software (named FLIK-DL), including an overview,
examples, and module descriptions. FLIK-DL software lets a user
prepare display lists, save them on disk files, load them in the
Ramtek, and call them.

(3) HELP RMSTN gives you a library describing the Ramtek
station software. This software builds, maintains, and provides
user access to a data structure that describes the available
Ramtek stations connected to a given processor. FLIK relies
heavily on this software for information that enables FLIK to
properly relate user applications and existing hardware. This
same RMSTN package provides applications with similar
information.

(4) HELP OMNI gives you a help library for the TRAC-FLVN
OMNI program. You run OMNI on-line against a user-edited input
disk file containing Ramtek instruction in a mnemonic format (as
seen in the Ramtek Software Instruction Manual and the Reference
Manual). OMNI converts those mnemonics to actual Ramtek code,
and sends that code to the Ramtek controller you specify. Use
OMNI to research the exact behavior of a Ramtek system and to try
examples from the Ramtek course training manual or the Ramtek
reference manual.

b. Metafiles. If you select this option, FLIK builds a
metafile containing information sent by the application to 21 of
the most-used FLIK graphics modules. Later on, the user can run
this file through a FLIK metafile display program that will
redraw the picture saved on the metafile. See appendix F for
operating instructions.

c. Display list functions. FLIK now provides display-list
capabilities to applications software. Display lists are
programs in Ramtek code format that reside in Ramtek memory.
Their usual purpose is to draw graphics, but they can also
branch, call, loop, load and store data, and interact with the
user through tablet or keyboard. A display list runs when it is
called. The host can call display lists and DISPLAY LISTS CAN
CALL OTHER DISPLAY LISTS.

11

* . .', %

(1) Previously, the inclusion of calls, branches, and
load-store operations into display list programs required
meticulous handling of absolute Ramtek addresses. This was
similar to writing in machine code on an old computer that had no
assembler or higher-level language compiler. Any attempt to
change or augment display list code or to combine several display
lists met with a complete review and/or revision of all the
absolute addresses contained therein. Needless to say, this
usually discouraged all but the most determined user from
incorporation of display lists.

(2) We feel that FLIK will make display lists more
attractive to the user. FLIK now provides four basic
display-list operations: define and compile, link, send, and
call. These operations must occur in order but not necessarily
under control of the same application. In addition, for display
lists that use branches, calls, and load-store operations, FLIK
entirely frees the user from all previous burdens of absolute
Ramtek addressing. The user works with symbolic names for such
addresses. There are three types of symbolic names: local,
common, and external. All these symbols are relocatable. This
means that the symbolic names the user sees remain constant,
while the absolute addresses the user does not see change when
the user changes or adds to display list code, or when the user
links combinations of various display lists for use together.
See appendix G for further explanation and examples.

d. Graphics training. FLIK has an associated package called
OMNI that helps you learn about the Ramtek system by trying the
examples presented in the Ramtek Systems Software training
manual. These examples contain instruction and operand
mnemonics, comments, and several types of constants--integer,
hexadecimal, and American Standard Code for Information
Interchange (ASCII). You enter these examples on an ASCII file
on the host, and give that file to OMNI. OMNI translates its
contents into Ramtek instructions and sends them to the Ramtek
you select.

(1) OMNI, as well as an application using FLIK, can build
and use display lists. In the past, OMNI-like graphics training
packages provided a primitive environment in which the user
worked with absolute Ramtek addresses for any Ramtek memory
references, such as load-store, branching, and calls. Now, the
new OMNI gives you the option to use symbolic names for those
same memory references. This new option mirrors the FLIK display
list capabilities. Just as with FLIK, OMNI has four basic
display-list operations: define and compile, link, send, and
call.

12

(2) OMNI's display-list object files have the same format
as the FLIK display-list object files. Thus, you can link
together display lists made by both OMNI and FLIK. You can also
call with OMNI display lists made by FLIK, and you can call with
FLIK display lists made by OMNI.

7. Known FLIK Limitations. While developing and testing FLIK,
we identified what we consider to be limitations.

a. Metafile capability is only in 21 modules. Those modules
all draw graphics with integer coordinates. None of the
virtual-coordinate graphics have metafile capability yet.

b. The switchable debug facilities are only in a very few
modules.

c. The user still must deal with the number of planes
available on a station, and with the imaging resolution. FLIK
contains no smarts to reduce the number of colors per level to
fit on the current station assigned.

d. FLIK has no capability to enable/disable the display of
data loaded into refresh memory in selected colors on selected
levels, or selected entire levels. However, the TAB design of
the color controls in FLIK will easily accomodate this feature.
For example, with an eight plane Ramtek, you might load
point-data containing eight types of vegetation/standing water in
the lower three planes, two kinds of roads and one type of river
in the two planes above that, temporary information in the next
plane, and military unit symbols for up to three forces in the
top two planes. You would define colors and levels accordingly.
Then, with this as yet unimplemented capability, you could
IMMEDIATELY make invisible all military forces, all units in a
specific force, all roads and rivers, selected types of roads,
rivers only, the temporary data, or the vegetation background.
You could later IMMEDIATELY make visible again that which you had
made invisible and do so WITHOUT the host taking time to redraw
it. While that data was invisible, the host could still change
it in Ramtek refresh. When that data became visible again you
would IMMEDIATELY see the updated information.

e. The original KWIMAGE will still blow up when two
processes simultaneously write images to separate stations on the
same Ramtek controller. An application can convert to using
KWIMAGEEFN as a replacement, but users of the old KWIMAGE will
still have problems.

f. There is no pixel-formatter emulation in FLIK for
hardware having no pixel formatters. There is no reverse
pixel-formatter emulation for reading back images split into two
or more sets of planes. Also, we have not yet tested FLIK's

13

ability to handle more than one pixel segment per image word.

g. FLIK resolves problems of hardware dependency while
building display lists. This makes the display list code
hardware dependent, so the display lists made for one Ramtek
configuration will not work on another. The current simple
solution is to keep a set of display lists for each configuration
you use. Two other more complex approaches to this solution are
mentioned in appendix G.

8. Development order. The development of the FLIK graphics
package from the Kellner graphics package has had several
iterations.

a. FLIK Version 1.0. This version incorporated the
following software: Kellner TRAC-WSMR low resolution, TRAC-WSMR
high resolution, and Fort Lewis high resolution packages except
for the unsolicited interrupt software from Fort Lewis.

(1) Software changes. TAB,TRAC-FLVN resolved differences
between the three versions (each over 100 modules). We tried the
unsolicited tablet interrupts from the Fort Lewis package with
our Ramtek Marquis driver, but they did not work. We removed the
hard-wired constants that tailored the various Kellner packages
to specific Ramtek hardware, including resolution, DAC size,
video board selectors, tablet and cursor selectors, MCP and
memory-group selectors, and bit-plane masks. TAB,TRAC-FLVN
replaced those constants with variables, some set by the FLIK
station software and others read back from the Ramtek. See
TRAC-F-TM-0687, Fort Leavenworth Improved Kellner Station Package
(FLIK-STN) documentation. We merged similar Kellner modules into
"super" modules having several entry points per module.

(2) Software additions. TAB,TRAC-FLVN wrote and
documented the FLIK station package. That package maintained a
unique data structure describing the Ramtek hardware at each user
site. We designed and coded a new KOVRDEF color control module
with what we feel to be smoother more generic logic. We wrote
the first TAB,TRAC-FLVN version of OMNI, the Ramtek graphics
training tool.

(3) Capabilities. Version 1.0 provided a single FLIK
library to link to. This graphics library resolved for most
applications the low/high resolution problem. Version 1.0 also
adjusted user's Ramtek integer coordinates to fit the refresh
memory size on the Ramtek in use.

b. FLIK Version 2.0. This was a major upgrade to help the
VIP package work with the multiple-MCP stations at TRAC-FLVN.
This version incorporated the following software: FLIK Version
1.0 and the first version of the FLIK station software. See

14

TRAC-F-TM-0687, the FLIK-STN documentation.

(1) Software changes. TAB,TRAC-FLVN went to a faster
version of the FLIK-STN software that worked with an unformatted
station file. This is still the current version of FLIK-STN. We
also made fixes to KOVRDEF color control module.

(2) Software additions. We added the smarts in the
imaging system to relate host pixel-bits with Ramtek bit-planes.
FLIK could then keep a default mapping between bits in a host
pixel and the Ramtek bit-planes targeted during a write-image.
We also added FLIK modules that let applications define and use
other such relationships. For more information, see paragraph 2g
and appendix B. We also added a second write-image module that
allowed double buffering of image data and solved the
simultaneous image problem. For more information, see paragraph
5b and appendix E. With double buffering, an application could
send pre-made pictures from disk to Ramtek twice as fast as
before. We added the logic to KOVRDEF to automatically switch to
a different MCP on the same station (if available) while
allocating Ramtek planes to the user-specified color levels. We
added the display list software and symbolic-names tables to let
users reference Ramtek memory locations with symbolic names,
providing relocatable display lists code. For more information,
see dppendix G. We also added a copy-image-and-multiply module
so VIP or any other user could display low-resolution image files
on a full high-resolution Ramtek screen without hardware zoom.

(3) Capabilities. FLIK Version 2.0 capabilities were the
same as version 1.0 but were now more generic with respect to the
number of MCPs per station and the bit-planes available. Version
2.0 made it much easier to transfer images. Version 2.0
initialized much faster due to new FLIK-STN software. See
TRAC-F-TM-0687 documentation. When two processes simultaneously
displayed images on different stations using the same Ramtek
controller, if those processes used the new KWIMAGEEFN module,
there was no possibility for the controller to hang. VIP could
display low-resolution maps on a high-resolution Ramtek full
screen. So, with Version 2.0, VIP users could keep only one set
of picture files, and these files would each be around 642 blocks
in size (instead of 2,566 blocks). Within a given amount of disk
space, the VIP user could fit four times as many pictures.

c. FLIK Version 2.1. This version contained minor fixes to
modules, and incorporated the following software: FLIK Version
2.0, and the newer, faster version of the ELIK-STN station
software.

(1) Software changes. TAB,TRAC-FLVN modified KOVRDEF to
properly handle overlay levels requiring up to and including 16
bit-planes. There are 16 planes available to each station on the

15

modified TRAC-FLVN 9460s. We also modified KTABLET to return
integers instead of reals for the Ramtek coordinates of the
cursor. We modified some modules to partially implement the new
FLIK debug on/off control capability.

(2) Software additions. We added FLIK debug control
modules DBGFLIK and DBGONOFF.

(3) Capabilities. FLIK version 2.1 had the same
capabilities as before. Also, the user could call DBG_ONOFF
(string, logical) to control debug in the named module for on or
off. This partial implementation only works with a few FLIK
modules.

d. FLIK Version 3.0. This version includes a metafile
input/output package and minor adjustments to work with VIC
version 1.2. This version incorporates the following software:
version 2.1 and the newer faster station software.

(1) Software changes. TAB,TRAC-FLVN changed 21 graphics
output modules to write metafiles using the metafile package
added to FLIK. We made new versions of the color-table modules
KLOADVLT and KREADVLT to convert between user's expected and
actual Ramtek color formats.

(2) Software additions. We added a metafile package to
make new metafiles, write to them, and redisplay the contents of
existing metafiles using a new driver that calls pre-existing
FLIK graphics output modules. We added a command language symbol
called FLIKMETAS and a corresponding foreign CLI command called
FLIKMETA. These let you redisplay a set of metafiles or a
single metafile. See appendix F for additional information. We
added modules KLAM and KRAM (old versions of modules KLOADVLT and
KREADVLT that we upgraded).

(3) Capabilities. FLIK version 3.0 capabilities are the
same as previous versions. Also, 21 FLIK modules now use the
metafile package. Version 3.0 supports the requirement TRAC-WSMR
placed on the Kellner graphics package used with VIC 1.2. The
requirement was that, during normal VIC 1.2 graphics output, the
Kellner package would save on a file the arguments passed from
VIC 1.2 into 21 Kellner modules. After a VIC run, the user could
run an off-line program to replay a picture from the file of
saved arguments. TAB,TRAC-FLVN upgraded FLIK to provide a
similar function. The corresponding 21 modules in FLIK save
their input arguments on a metafile (see appendix F). Now, we
can link FLIK to VIC 1.2 and generate metafiles, then use the
command

$ FLIKMETAS <filespec>

16

to redisplay those metafiles. Now, KLOADVLT and KREADVLT are
smarter. These lower-level modules load and read back the VLT
contents. Previously, these contents had the format of the DAC
size of the current Ramtek station. However, with this upgrade,
these two modules do a conversion between user-expected and
actual Ramtek DAC sizes. That way, the application is free to
manipulate VLT contents according to the expected DAC size (third
argument in KRMINIT initialization call).

9. Summary. This memorandum discussed problems solved by FLIK,
showed how to convert applications from Kellner packages to FLIK,
examined the hardware-dependent considerations, and presented an
ordered list of the development of FLIK versions thus far. We
presented the basic purpose of FLIK: how it will make existing
and new DOD graphics products that had used the Kellner graphics
interface package transportable and usable at a large number of
installations. Existing applications require very few changes to
convert to the FLIK system. This transportability significantly
increases the value of those products and, in some cases, may
help DOD avoid costly duplication of effort. Please direct any
comments or suggested improvements to Mr. Tim Daniels,
Technology Applications Branch, TRAC-FLVN, AV 552-4261.

17

APPENDIX A

TABLET POLLING APPLICATION

The Kellner graphics tablet read services would always return to
the user immediately: they would not wait for a puck button to
he pushed. Therefore, applications using Kellner graphics that
were designed to wait and effectively do nothing until a Ramtek
puck button push occurred would execute a loop containing only a
call to the Kellner tablet read service. The loop would continue
until a puck button was pushed. However, the applications that
actually required polling still used the Kellner tablet read
calls in a similar polling loop, but that loop also contained
operations in addition to the tablet read call. These additional
operations were usually display updates of some kind, based on
the current puck location. The following excerpt from VIC
playback illustrates such a loop and how to change that software
to use FLIK graphics.

CC FROM VIC PLAYBACK SOFTWARE, WITH COMMENTS ADDED AND
CC CODE REMOVED.
10 CONTINUE

CC GET CURRENT CURSOR X/Y, CONVERT TO REAL-VIRTUAL
CC COORDINATES, AND DISPLAY ON VT220.

CALL KRCURS (ICURSOR, IXCUR, IYCUR, ISTAT, ITRACK, IENTER)
CALL KTRANRTV (IXCUR, IYCUR, XPOS, YPOS)
CALL CURSOR(11,1)

C CALL UTILITY ROUTINE WITH PREVIOUSLY CALCULATED X,Y OFFSETS
C (XOFFST, YOFFST) ADDED TO XPOS,YPOS. RETURNS UTM
CC CONVERT MC TO UTM, AND DISPLAY ON VT220.
CC
CC FOLLOWING LINE CONTAINS AN ERRONEOUS
CC ASSUMPTION EXPLAINED BELOW.

IBUTN=IENTER

C *AN ENHANCED ROUTINE IN FLIK, KTABLET, ALLOWS THE USER TO DO
C *POLLING AND NON-POLLING TABLET READS.
C * ACTUALLY, THE ABOVE KRCURS AND KTRANRTV CALLS ARE
C * UNNECESSARY SINCE KTABLET RETURNS BOTH THE
C * SCREEN AND VIRTUAL COORDINATES OF THE CURSOR.
C * TO CLEAN UP THIS ROUTINE SHOULD MOVE THE
C * KTABLET CALL TO WHERE THE KRCURS CALL
C * IS AND DELETE IT AND THE
C * KTRANRTV CALL ALTOGETHER.

CCCCCCCALL KRTABBUT (ICURSOR, IDUMX, IDUMY, IBUTN)
CALL KTABLET (0, IBUTN, IXCUR, IYCUR, XPOS, YPOS)

CC IF PUCK BUTTON NOT PRESSED YET, THEN
CC LOOP BACK AND DISPLAY COORDINATES AGAIN.

IF(IBUTN.EQ.0) GO TO 10
CALL KCTEXT(IXCUR-7,IYCUR+8,IHGHT1,'O',l)

A-i

APPENDIX B

HOST MODE IMAGE SETTING

The Kellner packages each worked with a specific type of Ramtek
having a set number of bit-planes. The application built its
images for that set number of planes. When using FLIK, one
single graphics package allows for several possibilities of
bit-planes and image formats. You must ensure that applications
correctly specify the image format in the first arguments to
KWIMAGE and KRIMAGE. You must also ensure that users call these
modules and not ones specially added to some Kellner package.
The following example, an excerpt from a VIP/VISTA routine, shows
such a case.

CC VIP-SUBROUTINE VISTA PERS PERSPECTIVEMAP
CC (after image ready to transfer)
Cc
CC . . . CODE THAT PREPARES THE VIEW IN
CC . . HOST APPLICATION VIRTUAL MEMORY
cc
C DRAW THE PERSPECTIVE VIEW IN THE WINDOW

DO 600 IY-0,NYSPL-1,NROWS
IXl = NXOFSPL
IY1 - NYOFSPL + IY
IX2 - NXOFSPL + NXSPL - 1
12 = NYOFSPL + I¥ + NROWS - 1
IF (IY2.GE.NYOFSPL+NYSPL) IY2 = NYOFSPL+NYSPL-1
IF(ICONFIG .EQ. 1) THEN

CALL KWIMAGE(1,IXI,IYl,IX2,IY2,PIXELBUFI(IPNDX))
ELSE

CC UNUSED
CC ARGUMENT
CC v
CCCCCCCCCCCCCCCALL KWIMAGE_8600 V(1,IX1,IY1,IX2,IY2,

* PIXELBUF2(IPNDX))
CALL KWIMAGE(1,IX,IY1,IX2,IY2,PIXELBUF2(IPNDX))

ENDIF

B-1

APPENDIX C

GET AVAILABLE BIT-PLANES

This example shows how to determine the number of bit-planes
available on the current Ramtek station attached to.

CC YOU NEED A SMALL ARRAY FOR INFORMATION
CC FED BACK BY THE RAMTEK STATION SOFTWARE.

PARAMETER LEN LIST = 32
INTEGER * 4 PIX LIST (4, LENLIST)

CC DO THE NORMAL INITIALIZATION, IF NOT ALREADY
CC DONE PREVIOUSLY IN THE APPLICATION.

CALL KRMINIT (640, 512, 4, IMON)
CC NOW GET THE NO. OF USABLE BIT-PLANES ON THIS
CC STATION. ARRAY TELLS FOR EACH BIT-PLANE
CC THE MCP, GROUP, AND ACTUAL PLANE NUMBER.

CALL RMSTNPIXBITS (LEN_LIST, NBITS, PIX_LIST, IERR)

C-I

APPENDIX D

IMAGE SIZE IN APPLICATIONS

This example shows how to make applications sensitive to the
image size and how an application can respond to varying numbers
of available bit-planes. This slightly rearranged code comes
primarily from VIP modules ASSIGNGRAPH SAVEPIC, and PWRITER.
Note the calls to KQWIN and RMSTN PIXBITS to tell the application
the Ramtek resolution and number of available bit-planes. Note
also the calls to KPIXPUSH, KPIXHDFAULT, and KPIXRMDFAULT that
determine the relation between host pixel bits and Ramtek
bit-planes used by FLIK during image transfers.

CC YOU MUST MAKE A SMALL ARRAY TO CONTAIN
CC INFO RETURNED BY THE RAMTEK STATION MODULE.

PARAMETER LEN LIST = 32
INTEGER * 4 PIX LIST (4, LENLIST)

CC SPACE FOR INSTRUCTION FIELD AND IMAGE-DATA FIELD.
CC INSTRUCTION FIELD IS 11 WORDS.
CC IN THE DATA FIELD, USE EITHER
CC ONE BYTE OR ONE WORD PER PIXEL.
CC FOR LOW-RES, MAKE SPACE FOR 64 LINES, 640
CC PIXELS PER LINE. FOR HI-RES, MAKE SPACE FOR
CC 32 LINES, 1280 PIXELS PER LINE.

COMMON /PIC005/ PICBUFF1, PICBUFF2
BYTE PICBUFF1 (40982 , 2

22 BYTES OF INSTR + 40960 OF DATA
INTEGER * 2 PICBUFF2 (40971 , 2)

11 WORDS OF INSTR + 40960 OF DATA
EQUIVALENCE (PICBUFFF1 (1, 1), PICBUFF2 (1, 1)

CC
LOGICAL HIRES, HALF WORD ! RAMTEK CHARACTERISTICS
INTEGER * 2 QWIN (4) ! FORMAT WINDOW SIZE
CHARACTER*132 PICNAME ! DISK FILE NAME

CC INITIALIZE IF NOT DONE SO PREVIOUSLY.
CC THE LOW-RES 4-BIT DAC IS MERELY AN EXAMPLE.

CALL KRMINIT (640, 512, 4, IMON)
CC GET THE RAMTEK STATION RESOLUTION AND SET FLAG.

CALL KQWIN (QWIN)
HIRES = QWIN (3) .GT. 640

CC GET THE NUMBER OF BIT-PLANES AVAILABLE.
CALL RMSTN PIXBITS (LEN LIST, NBITS, PIXLIST, IERR)

CC SET THE "ACTUAL" IMAGE-RECTANGLE TO COVER
CC THE ENTIRE REFRESH MEMORY (FULL-SCREEN)

XRESMN = QWIN (1)
YRESMN = QWIN (2)
XRESMX = QWIN (3)
YRESMX = QWIN (4)

CC
CC . .IF NOT DONE PREVIOUSLY, THE
CC . .SOFTWARE TO DRAW PICTURE GOES HERE.
CC
CC

D-I1

cc SAVE THE IMAGE ON DISK. MAKE DISK RECORDS
cc EACH CONTAINING EITHER 64 LOW-RES OR
cc 32 HIGH-RES HORIZONTAL LINES, FULL-WIDTH.
cc
cc SET XLL,YLL,XUR,YUR FOR A FULL SCREEN

IXPMN = XRESMN
IYPHN = YRESMN
IXPNX = XRESMX
IYPMX = YRESMX

cc SET A PICTURE FILE NAME FOR THIS EXAMPLE.
PICNAME = 'FLIKEXAMPLE'

cc IF A CERTAIN FILE NAME AND IF .GT. 8 BIT-PLANES
cc ON THIS STATION, SWITCH TO HALFWORD IMAGES.

INDX = INDEX (PICNAME, 'VISTAWINDOW')
IF (INDX .NE. 0 .AND. NBITS .EQ. 10) THEN

HALFWORD = .TRUE.
IHMODE = 0

ELEHALFWORD = .FALSE.
IHM0DE = 1

ENDIF
CC SAVE THE CURRENT IMAGE TRANSFER RELATION BETWEEN
CC HOST PIXEL-BITS AND RAMTEK BIT-PLANES.

CALL KPIXPUSH (IERR)
CC RESET TO DEFAULT RELATION BETWEEN HOST BITS
cc AND RAMTEK BIT-PLANES.

CALL KPIXHDFAULT
CALL KPIXRMDFAULT

cc OPEN THE HOST DISK FILE TO SAVE THE PICTURE.
OPEN (UNIT = 12, FILE PICNAME I

ACCESS = 'SEQUENTIAL'
FORM = 'UNFORMATTED'

*ORGANIZATION = 'SEQUENTIAL'
IFSTATUS = 'UNKNOWN'

C SET NUMBER OF X SCAN LINES TO PROCESS
C OH THN AT ONE TIME BASED ON THE RESOLUTION.

IF (IRES) TE0ND.NIS.Q 0)TE

NPIX = 32
ELSE

NPIX = 64
ENDIF

CC IF WORKING WITH HALFWORDS,
CC CUT THE NUMBER OF LINES IN HALF.

IF (HALFWORD) THEN
NPIX = NPIX / 2

ENDIF
C CALCULATE X AND Y RANGE

NXPIX = IXPMX - IXPMN + 1
NYPIX - IYPTX - IYPMN + 1
NXYPIX = NYPIX - 1
IBUFSIZE =NXPIX * NPIX

cc WRITE A HEADER RECORD CONTAINING
cc THE PIXEL FORMAT, "ACTUAL" IMAGE
Cc WIDTH HEIGHT, LINES-PER-RECORD, AND

D-2

CC LOWER-LEFT AND UPPER-RIGHT CORNERS,
CC AND THE RAMTEK RESOLUTION.

INFO = IDIR
IF (HALF WORD) INFO = IOR (INFO, '10'X)
WRITE(12) INFO, NXPIX, NYPIX, NPIX,

* IXPMN, IYPMN, IXPMX, IYPMX, QWIN
CC LOOP ON HORIZONTAL IMAGE SECTIONS.

DO 100 I = 0, NXYPIX, NPIX
IXLL = IXPMN
IYLL = IYPMN + I
IXUR = IXPMX
IYUR = IYPMN + I + NPIX - 1
IF (IYUR .GT. IYPMX) IYUR = IYPMX

CC T. DANIELS: 15-MAR-1988: ADDED IF-CHECK
CC ON HALF WORD FORMAT
CC IF WORKING WITH A PICTURE REQUIRING
CC MORE THAN EIGHT BIT-PLANES, THEN

IF (HALF WORD) THEN
CALL KRIMAGE (IHMODE, IXLL, IYLL, IXUR, IYUR,

* PICBUFF2 (12, 1))
ELSE

CALL KRIMAGE (IHMODE, IXLL, IYLL, IXUR, IYUR,
* PICBUFF1 (23, 1))

ENDIF
C CALCULATE NUMBER OF WORDS TO WRITE OUT

NWDS= ((IXUR - IXLL) +1) * ((IYUR - IYLL) + 1)
NWORDS = MIN (NWDS , IBUFSIZE)

CC IF WORKING WITH A PICTURE REQUIRING
CC MORE THAN EIGHT BIT-PLANES, THEN

IF (HALFWORD) THEN
CC DOUBLE THE BYTE COUNT.

NWORDS = NWORDS * 2
CALL PWRITER (PICBUFF2 (12, 1) , NWORDS)

ELSE
CALL PWRITER (PICBUFF1 (23, 1) , NWORDS

ENDIF
100 CONTINUE

CLOSE (UNIT = 12)
CC RESTORE THE PREVIOUS IMAGE TRANSFER
CC ENVIRONMENT.

CALL KPIXPOP (IERR)
RETURN
END
SUBROUTINE PWRITER (IA, NWDS)
BYTE IA(NWDS)
WRITE (12) IA
RETURN
END

D-3

APPENDIX E

SIMULTANEOUS IMAGE TRANSFER PROBLEM

E-1 General. Below we describe the cause and solution for the
problems that occur when attempting with separate processes to
simultaneously redraw saved images from disk onto different
Ramtek stations driven by the same Ramtek controller.

E-2. Cause. To explain the root cause of the multistation
simultaneous image transfer problem, we present the following
topics.

o Multistation Ramteks and instruction handling.

o VAX/VMS I/O services.

o VAX/VMS I/O to multistation Ramteks.

o Marquis driver station-switching.

o Ramtek instruction formats.

o Kellner and FLIK Ramtek-instruction building.

o Instruction transfers and splitting.

o Split instructions, interlacing, and multiple stations.

o Confusion from split instruction in the driver and
controller.

a. Multistation Ramteks and instruction handling. A
graphics station partially consists of a single Ramtek monitor
and one or more input devices (such as tablet, cursor controller,
and/or Ramtek keyboard). These are all peripherals for a single
user. The remainder of the station is inside the Ramtek
controller, on several circuit boards dedicated to that station,
and on one circuit board shared by all stations on that
controller. This shared board is called the display controller
and is the focus of this discussion. From a programmer's
perspective, the display controller board's main task is to
handle instructions sent from the host computer. It parses and
translates those instructions, then feeds them to some
station-specific circuit board that carries out those
instructions.

b. VAX/VMS I/O services. Kellner and FLIK both transfer
instructions to the Ramtek, where the display controller operates
on them as described above. To do this transfer, Kellner or FLIK
both must use system services that submit a request for
input/output operations. Such a request is called a QIO, and
with a VAX/VMS I/O channel number, refers to I/O operations on a
specified peripheral device. A single QIO can only transfer one

E-1

or more contiguous words of physical memory. (The term
"contiguous" is one key to understanding the current problem.)
When a process attaches to one of several stations on the same
Ramtek controller, VAX/VMS gives it a unique I/O channel number
to use in QIO operations to that station. Even with these unique
channel numbers, VAX/VMS effectively puts onto a single I/O queue
all QIOs to all stations on that controller. Separate channels
for separate stations do not make for separate sequences of QIOs.

c. VAX/VMS I/O to multistation Ramteks. When users
simultaneously run two processes attached to different stations
on the same Ramtek controller, the QIO requests from within those
processes intermingle on the same system I/O queue. Thus, this
intermix of QIOs in VAX/VMS interleaves the previously separate
streams of Ramtek instructions that had each been intended for a
distinct Ramtek station. This intermix of QIOs and Ramtek
instructions is another key to understanding the current problem.

d. Marquis driver station-switching. The Marquis driver,
written in Macro Assembler and loaded with the VAX/VMS system,
carries out the I/O requests passed to it by VMS from the system
I/O queue. There is some attempt by the Marquis driver to
resolve this problem of the intermix of instruction streams
tagged for separate Ramtek stations. By using the I/O channel
included in the QIO request as a station-tag, the driver
determines the target station for each QIO it handles. The
driver processes a single mixed stream of QIOs, one QIO at a
time. The driver targets this QIO stream at a "current" Ramtek
station. When the driver detects that the current QIO is meant
for a Ramtek station different from the "current target station",
the driver switches "current target station" to that new Ramtek
station. Part of that switching is to send instructions to the
Ramtek itself to change to the context and graphics environment
of that new station.

(1) The driver "current target station" concept has two
purposes: it relieves the host graphics package or its user from
keeping the correct Ramtek graphics context for the current
Ramtek station, and it effectively separates the interleaved
Ramtek instruction streams back into the original sets tagged by
I/O channel number for each station.

(2) There is an assumption fundamental to the driver's
reliance on the I/O channel number in each QIO as a station-tag
when sorting the merged Ramtek instruction streams. The
assumption is that a single Ramtek instruction will never be
split into more than one QIO. (This assuuption is another major
piece of the problem).

e. Ramtek instruction formats. There are two general forms
of Ramtek instructions--single- and double-field. The
single-field instruction usually has an operation code, followed
by a few parameters, and is usually quite short. The
double-field instruction has an instruction field with an

E-2

operation code and parameters followed by a variable-length data
field. The write-image is a double-field instruction with a
small instruction field and a data field that can sometimes be
very large.

f. Kellner and FLIK Ramtek-instruction building. The user
application calls upper-level graphics modules in either Kellner
or FLIK. In response to those calls, the graphics package builds
the Ramtek instructions necessary to satisfy the user
application's graphics requirements, and when complete, transfers
those Ramtek instructions to the Ramtek with QIO requests.
Kellner and FLIK both build single-field instructions one way and
double-field instructions another way. When building the
single-field instructions, they locate all words of each such
instruction in contiguous memory internal to the graphics
package. However, when building double-field instructions, both
Kellner and FLIK locate the instruction and data fields of each
such instruction in two separate noncontiguous parts of host
memory. However, each of the two parts is contiguous. Usually
the instruction field is inside Kellner or FLIK and the
data-field is with the application. The instructions are now
ready for transfer to the Ramtek.

g. Instruction transfers and splitting. There are two
instruction-transfer "modes" in which Kellner and FLIK can
operate--nonbuffered (slow) and buffered (fast). In their slow
nonbuffered mode, both Kellner and FLIK transfer each instruction
immediately after it is built. They send each single-field
instruction with a single QIO request, and each double-field
instruction with two QIO requests.

(1) In the buffered mode, the treatment of Ramtek
instructions just after building them depends on the instruction
length. The normal case is for shorter instructions while the
exception case is for very long instructions. In the normal
case, both Kellner and FLIK copy each of the single-field
instructions and each of the shorter double-field instructions
into an internal graphics-output buffer immediately after
building them. There, those instructions await transfer to the
Ramtek. Later, a single QIO will transfer all instructions saved
in the graphics output buffer, after which the buffer is cleared.
That transfer and clear operation occurs for three reasons: (1)
the buffer fills, (2) the user asks to dump the buffer or read
back cursor, keyboard or tablet information, and (3) Kellner or
FLIK processes an instruction that is an exception case. The
exception case occurs just after building the instruction (first)
field of a very long double-field instruction having a large data
(second) field. In such a situation, Kollner or FLIK copies only
the instruction (first) field into the graphics output buffer,
does a normal transfer and clear operation as described above,
then sends the entire large data field of this current
double-field instruction with a single separate QIO.

E-3

(2) There are two situations in which a single
instruction will be split into multiple QIOs. They are: when
sending any double-field instructions during nonbuffered transfer
mode, and when sending double-field instructions having a large
data-field during buffered mode.

h. Split instructions, interlacing, and multiple stations.
When running just one process that transfers instructions to the
Ramtek, there is only one contributor to the system queue of QIOs
for that Ramtek controller. In addition, all of those QIOs are
tagged for the same station on that Ramtek controller. As a
result, the potential situation never arises that VAX/VMS would
interlace the QIOs for several stations on that Ramtek
controller. Even in the cases described above, when Kellner or
FLIK produce pairs of QIOs for some single instructions, those
pairs always stay together in the sequence of QIOs passed by VMS
to the Marquis driver. But, it is a completely different
situation when running two processes that simultaneously transfer
Ramtek instructions to different stations on the same Ramtek
controller. The QIOs to transfer instructions to those several
different stations will most assuredly interlace on the system
queue. Interlacing of QIOs results in interwoven blocks of
Ramtek instructions to be passed by the driver, some for one
station, and some for another. If any of those QIOs should
happen to include QIO pairs generated by Kellner or FLIK to
transfer some individual instruction, then those pairs may well
be separated from each other in the VAX/VMS queue as a result of
the interlace of QIOs.

i. Confusion from split instructions in the driver and
controller. This happens quite frequently to lengthy write-image
instructions. Under such conditions of two processes redrawing
images at the same time, VAX/VMS often sends to the Marquis
driver these QIO pairs interlaced in the sequence shown below.

o The instruction-field for the first station's write
image.

o The instruction-field for the other station's write

image.

o The data-field for the first station's write image.

o The data-field for the second station's write image.

While testing the channel numbers on each QIO, the driver will
inject its usual change-station commands and add to the
confusion. Consider what happens to this sequence on the Ramtek
side. The display controller firmware first parses the
instruction field of the first write-image. That field specifies
that a certain number of words IMMEDIATELY CONTIGUOUSLY FOLLOWING
the instruction field will contain the data field of that same
write-image instruction. So, the display controller treats them
as such, even though due to the intermix of QIOs and the driver's

E-4

[station-switching functions, the first few words following are
the switch-context instructions and the instruction field of the
second write-image instruction, intended for the other Ramtek
station. Following that, the display controller finds most of
the data field of the first write-image and treats it as such.
The display controller then treats the last few words of the data
field of the first write image instrtiction as a Ramtek
instruction, which usually blows it up since it is parsing data,
not instructions.

j. Summary of the problem. To sum up thus far, this problem
occurs when we run two simultaneous processes each assigned one
station on a multistation controller, sending QIOs over separate
I/O channels but through a single system queue wherein the
requests mix. This results in an interleaved sequence of Ramtek
instructions transferred, some for one station, and some for the
other. The Marquis driver that acts for both stations handles
each QIO individually and switches the Ramtek into the proper
station context indicated by the I/O channel for that QIO. The
driver assumes that Ramtek instructions never overlap between
QIOs. The write-image instruction usually has a very large
data-field. Therefore, Kellner and FLIK send each of those
instructions using a QIO pair. Often these pairs get split by
the interlace effect of the I/O queue, and due to the driver's
assumption that Ramtek instructions are never split in such a
manner, the driver will fail to undo the mix of the instructions
tagged for each station, and will inject in the wrong places the
switch context instructions. This results in a garbled Ramtek
instruction and the display controller fails to parse it.

E-3 Solution. To solve the simultaneous imaging problem, we
tackled the software that we could change, namely FLIK. Since we
could not prevent the interlacing of QIOs or alter the system
queue logic, we needed the ability to send write-image
instructions with one QIO. To do that, the entire instruction
needed to be contiguous in physical memory. We had two design
options: to greatly increase the size of the graphics output
buffer to contain large write-image instructions when in buffered
mode (around 65,545 words), or to provide a new FLIK module that
builds the write-image instruction field in user space just prior
to the data field. We have done the latter.

a. The new FLIK module is KWIMAGEEFN. This module requires
that you use a slightly larger image buffer than before, with the
first 11 halfwords set aside for the Ramtek instruction. You
must be sure to call KWAIT after calling KWIMAGEEFN. KWIMAGEEFN
was originally used in double buffering operations, but you can
use it in single buffer operations as well.

b. Once called, KWIMAGEEFN puts the instruction-field of the
write-image instruction into those additional 11 halfwords and
then issues one single QIO call to send the contiguous
instruction and data fields of the entire write-image
instruction. We left the original KWIMAGE alone, for

E-5

compatibility with existing user applications.

E-4. Sample solution. The following example comes from VIP
where TAB at TRAC-FLVN first tested the double buffering in FLIK.
This example shows the following things: how to provide the 11
extra instruction words (required for successful
simultaneous-process image transfers) at the front of the
application image buffer, how to do double buffering, and how to
make image-handling sensitive to the Ramtek resolution and to the
number of bit-planes available on a station.

CC YOU MUST MAKE A SMALL ARRAY TO CONTAIN
CC INFO RETURNED BY THE RAMTEK STATION MODULE.

PARAMETER LENLIST = 32
INTEGER * 4 PIX LIST (4, LENLIST)

CC SPACE FOR INSTRUCTION FIELD AND IMAGE-DATA FIELD.
CC INSTRUCTION FIELD IS 11 WORDS.
CC IN THE DATA FIELD, USE EITHER
CC ONE BYTE OR ONE WORD PER PIXEL.
CC FOR LOW-RES, MAKE SPACE FOR 64 LINES, 640
CC PIXELS PER LINE. FOR HI-RES, MAKE SPACE FOR
CC 32 LILNES, 1280 PIXELS PER LINE.

COMMON /PIC005/ PICBUFF1, PICBUFF2
BYTE PICBUFF1 (40982 , 2)

22 BYTES OF INSTR + 40960 OF DATA
INTEGER * 2 PICBUFF2 (40971 , 2)

11 WORDS OF INSTR + 40960 OF DATA
EQUIVALENCE (PICBUFFF1 (1, 1), PICBUFF2 (1, 1)

CC
LOGICAL HIRES, HALFWORD ! RAMTEK CHARACTERISTICS
INTEGER * 2 QWIN (4) ! FORMAT WINDOW SIZE
LOGICAL START_PIC, ENDPIC
LOGICAL EXIST

CC
INTEGER * 2 WMSK
INTEGER * 2 IWIN (4)

CC
CHARACTER*132 PICNAME ! DISK FILE NAME

CC
PICNAME = 'FLIK EXAMPLE'

CC INITIALIZE IF NOT DONE SO PREVIOUSLY.
CC THE LOW-RES 4-BIT DAC IS MERELY AN EXAMPLE.

CALL KRMINIT (640, 512, 4, IMON)
CC GET THE RAMTEK STATION RESOLUTION AND SET FLAG.

CALL KQWIN (QWIN)
HIRES - QWIN (3) .GT. 640

CC GET THE NUMBER OF BIT-PLANE3 AVAILABLE.
CALL RMSTN PIXBITS (LENLIST, NBITS, PIX LIST, IERR)

CC SET THE "ACTUAL" IMAGE-RECTANGLE TO COVER
CC THE ENTIRE REFRESH MEMORY (FULL-SCREEN)

XRESMN = QWIN (1)
YRESMN - QWIN (2)
XRESMX - QWIN (3)
YRESMX = QWIN (4)

E-6

r

CC SET XLL,YLL,XUR,YUR FOR A FULL SCREEN
CC
CC SAVE THE CURRENT IMAGE TRANSFER ENVIRONMEMNT
CC AND SET TO DEFAULT RELATION BETWEEN
CC HOST PIXEL-BITS AND RAMTEK BIT-PLANES.

CALL KPIXPUSH (IERR)
CALL KPIXHDFAULT
CALL KPIXRMDFAULT

CC CHECK TO SEE IF FILE EXISTS
INQUIRE (FILE = PICNAME, DEFAULTFILE = 'PICFILE:',

1 EXIST = EXIST)
IF (.NOT. EXIST) THEN

PRINT*,' PICTURE FILE DOES NOT EXIST ',PICFLNAME
PICNAME = '$NOTSEXIST$'
RETURN

END IF
OPEN (UNIT = 12, FILE - PICFLNAME

* DEFAULTFILE = 'PICFILE:',
* ACCESS = 'SEQUENTIAL'
* FORM - 'UNFORMATTED'
* READONLY,
* ORGANIZATION = 'SEQUENTIAL'
* STATUS = 'OLD'

CC READ IN HEADER RECORD FOR PICTURE FILE
READ (12) INFO,NXPIX, NYPIX, NPIX,

* IXPMN, IYPMN, IXPMX,IYPMX, QWIN
CC CHECK THE HALF-WORD BIT.

IF (IAND (INFO, '10'X) .NE. 0) THEN
HALFWORD = .TRUE.
IHMODE = 0

ELSE
HALFWORD = .FALSE.
IHMODE = 1

ENDIF
CC SET NUMBER OF POINTS

NXYPIX = NYPIX - 1
IBUFSIZE - NXPIX * NPIX

CC USE TWO PIXEL BUFFERS.
CC FIRST READ IS INTO BUFFER ONE.

IN PIC = 1
IOPIC = 2

CC THIS LOOP WILL READ IN PICTURE IN SLICES.
DO 100 INDX = 0, NXYPIX, NPIX

CC SET LOOP-CONDITION FLAGS
STARTPIC = (INDX .EQ. 0)
END_PIC = (INDX + NPIX .GT. NXYPIX)

CC IF THIS IS FIRST PASS THROUGH LOOP, THEN
IF (START-PIC) THEN

C IF DIRECTION IS LEFT TO RIGHT THEN
I = INDX

IXLL = IXPMN
IYLL - IYPMN + I
IXUR = IXPMX

E-7

IYUR - IYPMN + I + NPIX - 1
IF (IYUR .GT. IYPMX) IYUR = IYPMX

C CALCULATE NUMBER OF WORDS TO READ IN
NWDS ((IXUR - IXLL) + 1) * ((IYUR - IYLL) + 1
NWORDS = MIN (NWDS , IBUFSIZE)

IF (HALF WORD) THEN
CC DOUBLE THE BYTE COUNT.

NWORDS = NWORDS * 2
CC READ THE FIRST BUFFER

CALL PREADER (PICBUFF2 (12, IN-PIC), NWORDS)
ELSE

CC READ THE FIRST BUFFER
CALL PREADER (PICBUFFI (23, IN-PIC), NWORDS)

ENDIF
ENDIF

CC SWAP BUFFERS
ITEMP = 10_PIC
Io_PIC = IN PIC
INPIC = ITEMP

CC WRITE CURRENT BUFFER
IF (HALFWORD) THEN

CALL KWIMAGEEFN (IHMODE, IXLL, IYLL, IXUR, IYUR,
• PICBUFF2 (1, IO PIC))

ELSE
CALL KWIMAGEEFN (IHMODE, IXLL, IYLL, IXUR, IYUR,

* PICBUFF1 (1, IO PIC))
ENDIF

CC IF NOT DONE READING, THEN
IF (.NOT. END-PIC) THEN

C IF DIRECTION IS LEFT TO RIGHT THEN
I = INDX + NPIX

IXLL = IXPMN
IYLL = IYPMN + I
IXUR = IXPMX
IYUR = IYPMN + I + NPIX - 1
IF (IYUR .GT. IYPMX) IYUR = IYPMX

C CALCULATE NUMBER OF WORDS TO READ IN
NWDS= ((IXUR - IXLL) + 1) * ((IYUR - IYLL) + 1)
NWORDS = MIN (NWDS , IBUFSIZE

IF (HALF WORD) THEN
NWORDS = NWORDS * 2

CC READ NEXT BUFFER
CALL PREADER (PICBUFF2 (12, INPIC), NWORDS)

ELSE
CC READ NEXT BUFFER

CALL PREADER (PICBUFF1 (23, IN-PIC), NWORDS)
ENDIF

ENDIF
CC WAIT FOR WRITE TO FINISH

CALL KWAIT
100 CONTINUE

CLOSE (UNIT = 12)
CC RESTORE THE PREVIOUS IMAGE-TRANSFER
CC ENVIRONMENT.

E-8

CALL KPIXPOP (IERR)
RETURN
END
SUBROUTINE PREADER (IA, NWDS)
BYTE IA(NWDS)
READ (12) IA
RETURN
END

E-9

IL•. m, si l H l i•Il i i a -•

APPENDIX F

META-FILE CONTROL

F-1. Files creation. You control the creation of FLIK metafilcs
either from the terminal at run time or with a subroutine call
from within the application. Control from the terminal occurs
during initialization when you see this message-

KRMINIT: Enter one of these, for specified effect
Ramtek logical (like RMAO:) (graphics only)
Ramtek logical (like RMAO:M) (graphics and metafile)
Ramtek logical (like RMAO:Y) (metafile only)

a. If you were to enter "RMA0:M" for example, FLIK would
draw normal graphics plus create a metafile. Note that only the
FLIK modules in the set of upgraded modules would put their
information on that metafile. If you had entered "RMAO:Y" for
example, you would see no graphics and could do no interactive
Ramtek tablet inputs, but FLIK would still create that same
metafile containing information from those same upgraded modules.

b. From within an application, you can control the metafile
capability with a call to K TOGGLE FILE WR module. It has one
argument with valid inputs as follows:

SUBROUTINE KTOGGLEFILE WR(IONOFF)

C IONOFF = 1: don't write to file but draw Ramtek data.
C IONOFF = 2: write to file and draw Ramtek data.
C IONOFF = 3: write to file but don't draw Ramtek data.
C IONOFF = 4: read file and draw Ramtek
data

c. Another way to produce metafiles is to assume that meta
output is enabled. Then whenever you erase the screen with a
KOERASE or KERASE, FLIK saves that command on the current
metafile and closes it. FLIK then opens a new metafile and
automatically writes the current user expectations and color
overlay scheme onto that new file. The subsequent meta output
goes to that new file until the application does another KOERASE
or KERASE call. So, when running an application that includes
these screen erases, you will create a chain of metafiles, where
all but the last file ends in a screen erase. The metafile name
is

(]METAnnn.DAT

where "nnn" is a three-digit number ranging from 000 to 999.
While metafile creation is enabled, FLIK increases this number
each time it closes one metafile and opens another.

F-1

F-2. Playback. Once FLIK produces a metafile for an application
you can type it or look at it with the standard text editors. We
include the following information which you can also see when you
enter "HELPFLIK FLIKMETA DISP COMMAND" on the VAX/VMS system.

a. FLIK-META(S) command format. When replaying metafiles
from the terminal, you have two choices. In both cases, the
command format is the same, as follows:

$ FLIKMETA <file-spec> <options>

$ FLIKMETAS <file-spec> <options>

(1) Options. The following switches are associated with
these commands. They look like VMS DCL command switches,
starting with a slash (/), but unlike DCL options you must spell
them out completely.

(a) /TRACE - Use this switch to see a list of the FLIK
modules played back, in order.

(b) /TOTAL - Use this switch to see the modules and total
number of calls made for each file and for the entire set of
files played back.

(c) /EXCLUDE=<module-list> - Use this switch to suppress
the display of module(s) on the metafile.

(d) /ONLY=<module-list> - Use this switch to only display
specified module(s) from the metafile. Note that initialization
modules KRMINIT, KSELVO, and KOVRDEF are not suppressed by this
ONLY switch.

(2) Module-list. This is a list of one or more FLIK
modules. Used with the /EXCLUDE switch, the modules specified
will be excluded from the FLIK-META replay. Used with the /ONLY
switch, the modules specified will be the only ones displayed.
The format for the <module-list> is either of the following.

o <module>

o (<module> (,<module>].. .)

b. Examples. The examples below show the use of the
FLIKMETA and FLIKMETAS commands, and explain their effect.

(1) Example one. The following command displays a single
specified file.

$ FLIK META (.TEST]METAOOO.DAT

(2) Example two. The following command displays a single
specified file with a count of the number of times each module is
called. It excludes the display of rectangles through KRECT

F-2

.t

module.

$ FLIKMETA (.TEST]META000.DAT /TOTAL /EXCLUDE=KRECT

(3) Example three. This command displays all files

satisfying the file-spec shown.

$ FLIKMETAS [.TEST]META*.DAT

(4) Example four. The following command displays all
files satisfying the file-spec shown, with an ordered list of the
modules called. Only the modules specified in parentheses get
displayed from the metafile.

$ FLIK METAS [.TEST]META*.DAT /TRACE -
/ONLY=(KOVRBUF,KOCOLOR,KRECT,KCTEXT)

F-3

APPENDIX G

DISPLAY LISTS

G-1. Display lists: general. Display lists are programs made
of Ramtek instructions that you can load into random access
memory on the Ramtek. You can call a display list to execute the
instructions it contains. These calls can come either from the
host or from another display list. Display lists can perform
most normal graphics instructions. In addition, they can branch,
load-store registers, do arithmetic and Boolean operations, call
other display lists, and take data input from peripherals such as
tablets or keyboards. For more complete information on FLIK's
display list capabilities, enter the command HELP_DL in DCL on
VAX/VMS.

G-2. FLIK display list software location. Most of the software
for FLIK display list operations resides in libraries separate
from regular FLIK. Use the logical OFLIKDL for the directory
containing these libraries. There you will find text, object,
and help libraries. In a subdirectory called [.REFERENCEMANUAL]
a printable document called FLIKDL.MEM describes these
capabilities in greater detail. Any of the .MEM files at OFLIKDL
or in subdirectories below that should be helpful. To pick up
the new FLIK display list modules, insert one line in your
application's link file, just above the line OKGL:FLIK/OPT, as
follows:

$ LINK <main> -

OFLIKDL:A/LIB,- ! new FLIK display list modules
OKGL:FLIK/OPT ! standard FLIK graphics library

G-3. FLIK display list functions. FLIK now provides four basic
display-list operations: define and compile, link, send, and
call. These capabilities must operate in order, but not
necessarily under control of the same application.

a. There are various ways in which one or more applications
can carry out these four operations. For example, one run of a
single application program could define and compile one or more
display lists, link them together, and send the linked display
lists to the Ramtek and later call them as needed.
Alternatively, separate applications could each define and
compile several different display lists. Later, the user could
execute a stand-alone linker program to perform an off-line link
of all those display-list files made earlier. Finally, a
subsequent application program could send the linked display
lists all together to the Ramtek and afterwards call them as
needed.

G-1

b. The following modules under OFLIKDL control these four
operations:

(1) DLOPEN -- begins the definition and compile phase of
a display list with a specified external symbolic name (see
paragraph G-4 below). FLIK will eventually produce a file by
that name. This module automatically provides an external entry
point whose name is equal to the display list name. From here
until a call to DLCLOSE, the Ramtek code resulting from calls to
any FLIK module goes into the display list definition, not to the
Ramtek.

(2) DL CLOSE -- terminates the definition phase and
completes the compile phase. This module automatically provides
a Ramtek return instruction as the last word in the display list
definition. DLCLOSE writes the resulting local, common, and
external symbolic tables, plus the actual display list code, to
the appropriately named display-list file with file-type .DLOBJ.
If you have enabled a listing with DL LISTING, then you also get
a file of the same name but with file-type .DLLIS, which you can
type or see with the text editors.

(3) DL LINK -- does the link stage, which is transparent
to the user. You can also run a program called
OFLIKDL:LINKER.EXE from VAX/VMS DCL to accomplish the same thing
interactively. The application or the operator simply passes or
enters a list of the display list files to link together, plus
the desired output file name. From all the specified .DL OBJ
files, DL LINK merges their common and external symbol tables,
merges their common-area requirements, and finally combines their
display list code and total common areas into contiguous
sections, each earmarked for a specific Ramtek memory segment.
DL LINK saves the merged symbol tables and all of these sections
onto a single loadable file, with type .DL EXE. If you requested
a listing with DL LISTING, FLIK also writes out a .DLMAP file
which you can type or see with the text editors.

(4) DL SEND -- loads the single .DL EXE file specified by
the user into Ramtek memory, and keeps the symbol tables on the
host side so that applications can call the loaded display lists
with their symbolic name. DL SEND can reference the Ramtek
common area variables by their symbolic name.

(5) DL CALL -- calls a display list to run, using its
external symbolic name (see paragraph G-4 below).

G-4 FLIK symbolic names and symbol tables. Display list programs
on the Ramtek can do most normal graphics display operations, but
they also can branch, load-store between memory and registers,
and call other display lists. There is a "common" area of
display-list memory set aside on the Ramtek for interdisplay-list
communications. Without FLIKDL, for a user programmer to take
advantage of these extra Ramtek facilities required that he use

G-2

absolute Ramtek memory addresses. With FLIK, the user can
reference memory locations with three types of symbolic names:
local, common, and external. Load-stores use local or common
addresses. Branches and loops use local addresses. Calls to
display lists use external addresses. FLIK builds symbol tables
for these addresses and operates with them transparent to the
user during the compile and link phases. FLIK makes the host
privy to the common and external addresses to enable a host
program to call a display list by its external symbolic name and
to reference locations in the Ramtek common memory by their
common symbolic name. These symbolic names are relocatable, so
when a user changes and recompiles display list code or links
together different combinations of display lists that call each
other, the same symbolic names remain, even though the
corresponding absolute addresses will change.

G-5. Starting a display list. There are two causes for a
display list to execute. The more frequent cause is that either
the host or another display list calls it. The less frequent
cause is that the display list is entered in a local cursor or
keyboard function table. Entry in the cursor or keyboard
function table tells the the Ramtek itself to execute that
display list when someone operates the Ramtek tablet, cursor
controller, or keyboard. When using FLIK, these same Ramtek
rules still hold true. However, FLIK provides you with calls for
several situations, based on the particular stage of FLIK display
list operations and on the manner in which the display list is to
be invoked. The specific FLIK modules for each of these
situations appear below. See paragraphs G-10 and G-15 for
further information. Remember that in any case, the display list
you want to execute must have been already compiled by FLIK
between a DLOPEN and a DL CLOSE, linked by DL LINK, and loaded
by DLSEND. (See paragraph G-3). Additionally, remember that
instead of requiring absolute addresses to identify a display
list, FLIK provides external symbolic names for that purpose.

a. During the definition and compile stage (between DLOPEN
and DLCLOSE,) insert code into this display list to invoke
another display list (or sometimes even itself.)

(1) DL CDL -- between DLOPEN and DL CLOSE, inserts code
into a display-list to call another display list. This call will
actually occur when that first display list is later executed.

(2) DLSLCF and DLCLCF -- between DLOPEN and DLCLOSE,
DLSLCF inserts code into a display list to place an entry into a
local cursor function table for the execution of that or another
display list. The placement of this entry will actually occur
when this display list is later executed. DL CLCF inserts an
instruction that will remove this cursor function table entry.

b. After FLIK has defined and compiled .DLOBJ files between
DL OPEN and DL CLOSE, linked those DLOBJ files with DLLINK,
and sent the resulting .DLEXE file to the Ramtek with DLSEND,

G-3

you can start a display list with a call or through a local
cursor or keyboard function table. Remember: with FLIK, you
reference a display list with its external symbolic name to call
it under any and all conditions, even from the local function
table. This is true whether at define and compile time or after
loading the display list to the Ramtek.

(1) DLCALL -- from the host, execute a display list
immediately.

(2) DL SET LCF and DL CLCF -- DLSETLCF will make a
local cursor function table entry from the host, so that when
someone operates the puck or cursor controller the Ramtek will
execute that previously loaded display list. DLCLCF also works
from the host to remove this entry in the local cursor function
table, put there either by DL SETLCF, or by a display list whose
definition included Ramtek instructions produced by DLSLCF.

G-6. Returning from display lists. For returns from a display
list, FLIK automatically puts into the code one and only one
return, at the bottom of the definition. If you want extra
returns, for example just prior to an extra entry point, you call
KRETDL.

G-7. Entry points into display lists. The define and compile
stage automatically sets up an external symbol for the top of the
display list, where the symbol name equals the display list name.
You can create additional external symbols within the display
list for extra entry points using the module DLENTRY, shown in
the example below. This might produce a sequence as follows in
the define and compile stage.

CALL DLOPEN ('ODLDATA:DRAW4')
CC
CC . . . MAIN PORTION OF 'DRAW4'
c
cc

CALL KRETDL
5000 CALL DLENTRY ('DRAW4_END',)

cc
CC :SECOND PORTION OF DRAW41 CALLED 'DRAW4_END'
cc
cc

CALL DLCLOSE

G-8. Flow control. In Ramtek display list code there is one
command for flow control, the "Jump on display list register"
(JDLR) instruction. With this one instruction you can do
conditional or unconditional branching to a specified absolute
address. In any case you select one of 16 display list registers
to test, and a type of test (such as unconditional branch,
greater than zero, etc.). If the test succeeds, you branch.

G-4

a. FLIK display list capabilities allow you to use this same
instruction in a similar way, but you supply parameters for the
instruction that conform to the FLIK display list design
philosophy. The address is a local symbolic name plus an
optional word offset, not an absolute address. The type of test
is defined by character-string mnemonics (like GOTO, LT, EQ, NE,
GT, SET, RESET, etc.), not with an integer condition value. For
people familiar with the JDLR this may take some getting used to.

b. FLIK also provides modules to create rudimentary
IF-THEN/ELSE/ENDIF and DO/ENDDO constructs in display lists. You
can have nested IF-THEN/ELSE/ENDIF constructs and nested DO/ENDO
constructs, and nest IFs within DOs, and vice versa. There is no
DO WHILE, and the IF test can only have one predicate.

(1) IF-THEN/ELSE/ENDIF construct. The IF predicate
specifies an execution time comparison between two operand
values. The first of those two values is always specified in the
IF predicate as a display-list register number. At execution
time the contents of that display-list register will be the first
operand in the comparison. There, the IF predicate provides you
with two possible ways to specify the second operand in the
comparison. One way to specify the second operand is to provide
another display-list register number. At execution time the
contents of that other display-list register will be the second
operand in the comparison. The other way to specify the second
operand is to provide a constant value. At execution time that
constant will be the second operand in the comparison. You use
mnemonics such as LT, LE, EQ, etc., to specify the type of
comparison. The benefit of this method over the JDLR is that
FLIK does some of the necessary manipulations for you that you
would ordinarily do to achieve a certain test. Also, you need
not deal with any absolute addresses or even the FLIK local
branch symbolic labels to build IF-THEN/ELSE/ENDIF constructs.
FLIK automatically provides these labels for you.

(2) DO-ENDDO construct. The DO/ENDDO provides the usual
do loop construct: I = El, E2, E3, where I is an increment
value, El is the starting value, E2 is the ending value, and E3
is an increment. The increment can be either positive or
negative. The loop test is at the top of the loop. The three
loop controls can either be determined at execution time from the
contents of display-list registers, or they can be constants.
This is similar to the predicate operands in the
IF-THEN/ELSE/ENDIF construct. The benefit of using the FLIK
DO/ENDDO is that you do not have to write that display-list code
yourself every time you need it, and you need not work with any
local symbolic labels or absolute addresses for the top and
bottom of each loop. FLIK automatically supplies local symbolic
labels for those points in the code. When using the DO
constructs you need to remember that you have "reserved"
registers for the increments in the DO. When nesting DO loops be
sure that each loop uses a different register for the increment
value. FLIK does not check for this.

G-5

- -- J

G-9. Interactive Ramtek input. The Ramtek display list facility
contains an instruction to take input from Ramtek peripherals
such as keyboard, cursor controller, tablet, etc. FLIK will
insert this instruction into a display list during the define and
compile phase. To do so, you call DL PLDLR. You specify a
peripheral device, the type of input from that device, and the
Ramtek display list registers into which to transfer the data.
After that call, you can define other instructions in the display
list code that will test those input data or use coordinates or
ASCII characters for graphics drawing, etc.

G-10. Host-Ramtek synchronization. The host normally controls
the execution of Ramtek code through display list calls. The
Ramtek can bring the host out of a wait state by generating
interrupts resulting from a Ramtek user operating the tablet or
keyboard. This always happens without a cursor function table
entry. But, when working with local function table entries, you
can use a flag (H-BIT) contained therein to enable or disable
that host interrupt. From within a display list, the Ramtek
itself can change this table entry including the H-BIT. So with
a local function table in use, and the host waiting for an
interrupt from the Ramtek, the Ramtek can use the H-BIT for
partial control over the time that the host interrupt will occur.
However, the Ramtek still depends on activity at its peripherals.
That activity combined with the H-BIT enabled will interrupt the
waiting host.

a. We can illustrate this with lines from the etch-sketch
example below. We show lines from the define and compile of a
two-section display list. It has two entry points. The main
entry point is 'DRAW4', and the second entry point is
'DRAW4_END'. The code of 'DRAW4' has instructions to get the
tablet and cursor coordinates and status. It also contains
select cases to test for puck button that tell what action the
user is taking. The button values are in a display list register
whose number is set in IDLRFLAG. We have omitted all select
cases but one.

b. The select case shown is for the "quit" button test. If
this test succeeds, then the code will change the cursor table--
it will switch on the H-BIT and use a different entry point,
'DRAW4 END'. For the next tablet activity, the Ramtek will
interrupt the host and execute at 'DRAW4_END'.

CC THE VARIABLES IDLR * ARE INTEGERS FROM 0 TO 15 AND SPECIFY
CC RAMTEK DISPLAY LIST REGISTERS. USING THESE VARIABLES
CC INSTEAD OR CONSTANTS MAKES IT EASIER IN A LARGE PROGRAM
CC TO CHANGE THE USAGE OF THE SIXTEEN AVAILABLE RAMTEK
CC DISPLAY LIST REGISTERS.
CC

IDLR FLAG = 0 ! USE FOR TESTING TABLET BUTTONS
IDLE-CURS = 5 ! THIS PLUS NEXT TWO REG FOR X,Y,STAT
IDLR_TAB = 8 1 THIS PLUS NEXT TWO REG FOR X,Y,STAT

G-6

ITABNUM = 0 ! HARDWIRE TO CURSOR ZERO.
cc

CALL DLOPEN ('ODLDATA:DRAW4')
CC LOAD INTO THREE REGISTERS THE CURRENT
CC CURSOR X, Y, AND STATUS.

CALL DLPLDLR (IDLRCURS, 'CURS, ITABNUM)
CC LOAD INTO THREE REGISTERS THE CURRENT
CC TABLET X, Y, AND STATUS.

CALL DL PLDLR (IDLR_TAB, 'TAB', ITABNUM)
CC
CC .CODE TO MOVE THE LOW FOUR BITS OF TABLET
CC • .STATUS INTO 'IDLR FLAG' REGISTER.
CC . . SELECT-CASES IN 'DRAW4' TO HANDLE PICTURE
CC . .DRAWING.
CC
CC SELECT CASE -- QUIT (LOW-FOUR-BITS OF TABLET STATUS = 4)

CALL DLIF (1, IDLR FLAG, 'EQ', 4)
CC CHANGE THE LOCAL CURSOR FUNCTION TABLE ENTRY
CC TO INCLUDE THE H-BIT, AND TO EXECUTE STARTING
CC AT 'DRAW4 END'.

CALL DLCLCF (ITABNUM)
CALL DLSLCF (1, ITABNUM, ICONTEXT, , 'DRAW4_END')

CALL DL ENDIF
CC RETURN FROM ALL SELECT-CASES.

CALL KRETDL
5000 CALL DLENTRY ('DRAW4 END',)

CC INTERRUPT COMES HERE WHEN H-BIT IS SET.
CC TURN OFF THE CURSOR USING INVISIBILITY AND
CC PLACEMENT OFF-SCREEN.

CALL KWCURS (0, 0, 640, 512)
CALL DLCLOSE

(1) We pulled these lines from the software that uses the
etch-sketch display list. After sending it, this code enables
local cursor function for the main entry point 'DRAW4', but
without the H-BIT. Then, the code waits for an interrupt from
the Ramtek, which under present conditions will never happen.

(2) At this point, the user can sketch a picture without
interrupting the host. When the user finishes his picture, he
presses the blue puck button meaning "quit". In the code lines
shown above for the 'DRAW4' definition, we show the "quit" select
case. As described there, etch-sketch itself alters the local
cursor function table to include host interrupt and the execution
of not 'DRAW4' but 'DRAW4 END'. The next tablet activity
executes "DRAW4_END' and interrupts the host. The display list
turns off the cursor, and this host program disables local cursor
functions. The lines omitted here are the reading back of the
picture to the host. They appear below in the actual program
example. This is just an outline.

G-7

CC DISABLE LOCAL CURSOR FUNCTIONS AND CLEAR THE
CC TABLE.

CALL KSETLCFS (ITABNUM, 1)
CALL DL CLCF (ITABNUM)

CC SEND THE ETCH-SKETCH DISPLAY LIST TO RAMTEK.
CALL DLSEND ('ODLDATA:DRAW4', NDL, DLLIST)

CC SET THE TABLET TO INTERRUPT IN TWO CASES:
CC TK = WHEN USER HOLDS DOWN AT LEAST ONE BUTTON AND
CC MOVES THE PUCK.
CC TE = WHEN USER RELEASES THE LAST OF ONE OR MORE
CC BUTTONS THAT WERE DEPRESSED.

ISTAT = '5000'X + '0100'X + + '0F'X
! (TE+TK) + TD + (F3+F2+F1+FO)

CALL KWTABST (ITABNUM, ISTAT, 4, 4)
CC MAKE THE CURSOR VISIBLE.

ISTAT = 1
CALL KWCURS (ITABNUM, ISTAT, 640, 512)

CC ENABLE CURSOR INTERRUPTS ON RAMTEK FOR THAT TABLET.
CALL KSETLCFS (ITABNUM, 2)

CC SET THE LOCAL CURSOR FUNCTION FOR THIS TABLET
CC SO THE RAMTEK, WHEN SOMEONE USES THE PUCK,
CC WILL JUMP TO DL-ENTRY POINT 'DRAW4', AND EXECUTE
CC THIS DISPLAY LIST. TELL THE RAMTEK NOT TO
CC INTERRUPT THE HOST WHEN THIS HAPPENS.

IHBIT = 0
CALL DL SET LCF (IHBIT, ITABNUM, ICONTEXT, , 'DRAW4')

CC WAIT UNTIL RAMTEK SENDS BACK AN INTERRUPT.
CALL KRTABST (ITABNUM, IX, IY, ISTAT)

CC.
CC. . THE CODE OMMITTED READS BACK THE PICTURE SKETCHED
CC.
CC.
CC.
CC SWITCH OFF THE LOCAL CURSOR FUNCTION AND
CC REMOVE ENTRY FROM TABLE.

CALL KSETLCFS (ITABNUM, 1)
CALL DLCLCF (ITABNUM)

G-11. Hardware dependency of display lists. There are some
Ramtek instructions, especially read-back instructions, that do
not work in display lists, even in a FLIK environment. Refer to
the Ramtek Software Reference Manual when in doubt about any
given instruction. Also, FLIK produces Ramtek dependent display
list code, tuned by FLIK to the attached Ramtek when compiling
the display list. This ties display lists to Ramtek hardware
configurations. With some planning you can minimize the
resulting problems. FLIK normally adjusts to several Ramtek
peculiarities: the resolution, the number of planes available,
the allocation of those planes to the color/levels layout, the
tablet and cursor numbers for the current station, etc. With
FLIK, Ramtek instructions get rerouted into display list
definitions. They carry with them the adjustments made by FLIK

G-8

to the attached Ramtek station, while generating the display
lists. In other words, the display list code becomes "tuned" to
that Ramtek station hardware. To handle this problem, you have
three courses of action: live with hardware-dependency of
display lists and keep a set for each hardware station, remove
the dependencies, or plan for the host program that calls the
display lists to solve these dependencies either with Ramtek
capabilities (such as the transformation matrix to solve the
resolution problem), or with self-modifying display-list code.
Self-modifying code is possible; for an example see paragraph
G-14.

G-12. Basic example. The following example shows the use of all
four operations of the FLIK display list package. The example
includes a program that will define and compile three display
lists that call each other. We also show the execution of a
stand-alone display list linker. Then we show a second program
that sends the linker output file to the Ramtek and calls the
first display list which calls the second which calls the third.

a. Define and compile. The following application defines
and compiles the three display lists.

PROGRAM ELS
CC DEFINE THE ARRAYS FOR FLIK COLOR/LEVEL

PARAMETER NLVL = 1
PARAMETER IDIM = 8
INTEGER * 2 NPPL (NLVL)
INTEGER * 2 ICOL IN (IDIM, NLVL)

CC THESE ARRAYS FOR VIRTUAL LINE DRAWING.
REAL * 4 X (5), Y (5)

CC SET UP THE FLIK COLOR/LEVEL DATA
DATA NPPL /3/
DATA ICOLIN /'000'X, ! BLACK
• 'FOOX, ! RED
• '0FO'X, ! GREEN
• '00F'X, ! BLUE
• 'FFO'X, ! YELLOW
• 'OFF'X, ! CYAN
• 'FOF'X, I PURPLE
• 'FFF'X / ! WHITE

CC SET UP THE RECTANGLE VIRTUAL CORNERS.
DATA X /1000., 10000., 10000., 1000., 1000./
DATA Y /1000., 1000., 10000., 10000., 1000./

CC INITIALIZE WITH A CERTAIN RAMTEK
CALL KRMINIT (1280, 1024, 4, MON)

CC SEND THE COLOR/LEVEL SETUP TO FLIK.
CALL KOVRDEF (NLVL, NPPL, ICOLIN, IDIM)

CC DUMP ANY REMAINING CONTENTS IN THE FLIK
CC OUTPUT BUFFER.

CALL KFLUSH
CC SWITCH ON THE DISPLAY-LIST LISTING OUTPUT.

CALL DLLISTING (.TRUE., .TRUE.)
CC BEGIN DEFINITION AND COMPILE OF DISPLAY

G-9

CC LIST NAMED 'ELCALLI' TO GO IN A FILE
CC UNDER LOGICAL ODLDATA.

CALL DLOPEN ('ODLDATA:ELCALL1')
CC UNTIL FURTHER NOTICE,
CC SUBSEQUENT FLIK CALLS PRODUCE RAMTEK CODE
CC THAT GOES INTO DISPLAY LIST ELCALLI.

CALL KOVRBUF (1)
CALL KOBCOLR (1)
CALL KOCOLOR (2)

CC ERASE PLANES WITH SPECIFIED COLOR.
CALL KOERASE (1)
IXCEN = 500
IYCEN = 500

CC DRAW AND FILL A CIRCLE.
CALL KCIRCLE (IXCEN, IYCEN, 200)
CALL KOBCOLR (2)
CALL KOCOLOR (2)
MODE = 2
CALL KFILL (MODE, IXCEN, IYCEN)

CC SET VIRTUAL-TO-RAMTEK WINDOW MAPPING.
HIGH = 10240.
WIDE = 12800.
CALL KCORDTRAN (0., 0., WIDE, HIGH, 0, 0, 1280, 1024)

CC DRAW A BOX BORDER IN VIRTUAL
CALL KOCOLOR (3)
CALL KLADRAWS (X, Y, 4)
WRITE (6, *) 'EL: after KLADRAWS'

CC DRAW TEXT-NAME OF THIS DISPLAY LIST TO
CC INDICATE FOR TEST THAT IT WAS CALLED.

CALL KOCOLOR (4)
CALL KTEXT (20, 20, 6, %REF ('EL-I'), 4)

CC CALL DISPLAY-LIST ELCALL2.
CC THIS DISPLAY LIST DOES NOT EXIST YET,
CC SO IT BECOMES AN UNRESOLVED EXTERNAL
CC REFERENCE.

CALL DL CDL ('ELCALL2')
CC END THE DEFINITION OF DISPLAY-LIST ELCALL1,
CC COMPILE IT, AND SAVE ON DISK FILE ELCALL1.DL_OBJ.
CC ALSO PRODUCE A LISTING ON ELCALL1.DLLIS.

CALL DL CLOSE
CALL KNBATCH

CC BEGIN DEFINITION AND COMPILE OF DISPLAY
CC LIST NAMED 'ELCALL2' TO GO IN A FILE
CC UNDER LOGICAL ODLDATA.

CALL DLOPEN ('ODLDATA:ELCALL2')
CC UNTIL FURTHER NOTICE,
CC SUBSEQUENT FLIK CALLS PRODUCE RAMTEK CODE
CC THAT GOES INTO DISPLAY LIST ELCALL2.

CALL KOVRBUF (1)
CALL KOCOLOR (2)
CALL KOBCOLR (1)

CC ERASE PLANES WITH A SPECIFIED COLOR.
CALL KOERASE (1)
IXCEN = 500

G-10

3 ra _ _ _ __ _ _--.

IYCEN - 500
IXAXIS = 100
IYAXIS = 200

CC DRAW AND FILL AN ELLIPSE.
CALL KELLIPSE (IXCEN, IYCEN, IXAXIS, IYAXIS)
CALL KOBCOLR (2)
CALL KOCOLOR (2)
MODE = 2
CALL KFILL (MODE, IXCEN, IYCEN)

CC SET VIRTUAL-TO-RAMTEK WINDOW MAPPING DIDFFERENTLY.
HIGH = 10240.
WIDE = 12800.
CALL KCORDTRAN (0., 0., WIDE, HIGH, 0, 0, 1280, 1024)

CC DRAW A BOX BORDER IN VIRTUAL
CALL KOCOLOR (3)
CALL KLADRAWS (X, Y, 4)
WRITE (6, *) 'EL: after KLADRAWS'

CC DRAW TEXT-NAME OF THIS DISPLAY LIST TO
CC INDICATE FOR TEST THAT IT WAS CALLED.

CALL KOCOLOR (4)
CALL KTEXT (120, 20, 6, %REF ('EL-2'), 4)

CC CALL DISPLAY-LIST EL3.
CC THIS DISPLAY LIST DOES NOT EXIST YET,
CC SO IT BECOMES AN UNRESOLVED EXTERNAL
CC REFERENCE.

CALL DLCDL ('EL3")
CC END THE DEFINITION OF DISPLAY-LIST ELCALL2,
CC COMPILE IT, AND SAVE ON DISK FILE ELCALL2.DLOBJ.
CC ALSO PRODUCE A LISTING ON ELCALL2.DLLIS.

CALL DLCLOSE
CALL KNBATCH

CC BEGIN DEFINITION AND COMPILE OF DISPLAY
CC LIST NAMED 'EL3' TO GO IN A FILE
CC UNDER LOGICAL ODLDATA.

CALL DLOPEN ('ODLDATA:EL3')
CC UNTIL FURTHER NOTICE,
CC SUBSEQUENT FLIK CALLS PRODUCE RAMTEK CODE
CC THAT GOES INTO DISPLAY LIST EL3.

CALL KOVRBUF (1)
CALL KOCOLOR (3)
CALL KOBCOLR (1)

CC ERASE PLANES WITH A SPECIFIED COLOR.
CALL KOERASE (1)

CC
IXCEN = 100
IYCEN = 500

CC DRAW AND FILL TWO CIRCLES.
CALL KCIRCLE (IXCEN, IYCEN, 50)
CALL KOBCOLR (3)
CALL KOCOLOR (3)
MODE = 2
CALL KFILL (MODE, IXCEN, IYCEN)

CC
IXCEN = 400

G-11

IYCEN = 500
CALL KCIRCLE (IXCEN, IYCEN, 50)
CALL KOBCOLR (3)
CALL KOCOLOR (3)
MODE = 2
CALL KFILL (MODE, IXCEN, IYCEN)

CC SET VIRTUAL-TO-RAMTEK WINDOW MAPPING STILL
CC DIFFERENTLY.

HIGH - 10240.
WIDE = 12800.
CALL KCORDTRAN (0., 0., WIDE, HIGH, 0, 0, 1280, 1024)

CC DRAW A BOX BORDER IN VIRTUAL
CALL KOCOLOR (4)
CALL KLADRAWS (X, Y, 4)
WRITE (6, *) 'EL: after KLADRAWS'

CC DRAW TEXT-NAME OF THIS DISPLAY LIST TO
CC INDICATE FOR TEST THAT IT WAS CALLED.

CALL KOCOLOR (4)
CALL KTEXT (320, 20, 6, %REF ('EL-3'), 4)

CC END THE DEFINITION OF DISPLAY-LIST EL3,
CC COMPILE IT, AND SAVE ON DISK FILE EL3.DLOBJ.
CC ALSO PRODUCE A LISTING ON EL3.DLLIS.

CALL DL CLOSE
CALL KNBATCH

CC
STOP
END

You enter, FORTRAN-compile, link, and run this program. The link
must include OFLIKDL:A/LIB, and OKGL:FLIK/OPT. When you run the
program and initialize with a certain Ramtek station, FLIK will
define and compile the three display lists, tailored to fit on
the selected station. The run produces three display list files
on ODLDATA, namely ELCALL1.DLOBJ, ELCALL2.DLOBJ, AND
EL3.DLOBJ. There are also a similar set of .DLLIS files that
you can type or edit.

b. Off-line linker. Next, to link the three display lists
you run the off-line display-list linker program as follows.

$ RUN OFLIKDL:LINKER
MAKE list of DL's to link
DL-name, or <CR> to end ODLDATA:ELCALL1
DL-name, or <CR> to end ODLDATA:ELCALL2
DL-name, or <CR> to end ODLDATA:EL3
DL-name, or <CR> to end <cr>
ENTER DL-EXE file name 0DLDATA:ELS
output a listing? [Y/N] (N] Y
DLDLLINK: link phase
DLDLLINK: commons phase
DL_DLLINK: positioning phase
DLDLLINK: segment phase
DL_LINK: save-EXE phase

G-12

b wq.m

DLDLPREP: external 0047 4100 8000
DLDLPREP: external 0039 4100 8094
LOADED DLS
FORTRAN STOP

c. Send and call. Finally, with another program you load
and call the display lists in the following piece of code. For
simplicity, this sample program is noninteractive: the name of
the DL EXE file to load and the name of the display list on that
file to call are both hardwired. In the real version of this
software, available as OFLIKDL:RUNNER.EXE, you respond to
prompts. First, you enter the name of the .DLEXE file and see a
list of the display lists it contains. Then, you enter the name
from that list of the display list now loaded which you wish to
execute.

PROGRAM RUNNER
CC

CHARACTER * 64 rC LIST (64)
CHARACTER * 1 YLA'4O
CHARACTER * 12 DL SEL
CHARACTER * 80 DLEXENAME

CC
LOGICAL SEPARATELOAD
LOGICAL ALREADY IN RAMTEK

CC SAME COLOR/LEVEL DEFINITIONS AS IN THE
CC PROGRAM THAT DEFINED AND COMPILED THE
CC DISPLAY LISTS. THIS IS CRITICAL IF YOU
CC INSIST ON SETTING COLORS AND LEVELS IN THE DL.

PARAMETER NLVL = 1
PARAMETER IDIM = 8
INTEGER * 2 NPPL (NLVL)
INTEGER * 2 ICOLIN (IDIM, NLVL)

CC
REAL * 4 X (5), Y (5)

CC
DATA NPPL /3/
DATA ICOL IN /'000'X, BLACK
• 'FOO'X, RED
• '0F0'X ! GREEN
• '00F'X, ! BLUE
• 'FFO'X, ! YELLOW
• 'OFF'X, ! CYAN
• "FOF'X, ! PURPLE
• 'FFF'X / ! WHITE

CC INITIALIZE THE RAMTEK.
CALL KRMINIT (1280, 1024, 4, MON)

CC SET THE SAME COLORS/LEVELS AS BEFORE.
CALL KOVRDEF (NLVL, NPPL, ICOLIN, IDIM)

CC TURN ON THE LISTING OPTION TO PRODUCE
CC A .DLMAP FILE.

CALL DLLISTING (.TRUE., .TRUE.)
CC SEND THE DISPLAY LIST LINKED FILE THAT

G-13

CC YOU JUST LINKED OFFLINE.
CALL DLSEND ('ODLDATA:ELS', 1, DL LIST)

CC SHOW USER WHICH DISPLAY LISTS WERE SENT.
WRITE (6, *) 'SENT ', NDL, ' DLs'
DO IDL = 1, NDL

LAST = LASTNONB (DL LIST (IDL))
WRITE (6, '(lX, A)') DLLIST (IDL) (1 : LAST)

ENDDO
CC CALL THE TOP LEVEL DISPLAY LIST THAT
CC WILL CALL THE SECOND THAT WILL CALL
CC THE THIRD.

CALL DLCALL (DLLIST ('ELCALLI')
STOP
END

G-13. Register instructions. All these instructions involve the
16 display list registers provided by the Ramtek. Some of these
instructions also involve locations in display list memory.

a. Ramtek register operations. The original Ramtek (not
FLIK) instructions for several types of register operations
appear below.

(1) Set display list register (SDLR): Set a display list
register to a constant value.

(2) Load (LDLR) and store (STDLR): Move data between a
display list register and memory, or vice versa. You specify the
memory address--absolute or immediate. With absolute addressing,
the actual address of the memory location is in the instruction.
With immediate addressing, the absolute address of the memory
location is expected to be in another specified display list
register at execution time.

(3) Binary operators. Perform arithmetic and Boolean
operations between two operands. One is always a display list
register, and the other can either be a display list register or
a constant.

b. FLIK register operations. FLIK provides capabilities
similar to those shown above. In addition, FLIK provides not one
but three load-store modules, depending on the type of addressing
you need.

(1) Set display list register (SDLR). Both Kellner and
FLIK provide the regular SDLR instruction with module KSSETDLR.
FLIK also allows you to set the contents ot a display list
register equal to the absolute address corresponding to a local
symbolic name.

(2) Memory location label (DLLABEL). You can assign a
local symbolic name to the current position (with optional
offset) in the display list code definition. Use these labels

G-14

for all local symbolic memory accesses used by load-store and
branch operations.

(3) Load-store (DL MEM). You can move a word between a
display list register and a local or common symbolic location
(with optional constant offset).

(4) Load-store relative (DL MEMR). You can move a word
between a display list register and a local or common symbolic
location with a displacement being the execution time contents of
a display list register.

(5) Load-store immediate (DL MEMI). You can move a word
between a display list register and a memory location whose
absolute address resides at execution time in another display
list register

(6) Register-to-register operations (DL R2R). You can
apply arithmetic or Boolean operations to two operands; the first
is always a display list register, and the second is either a
display list register or a constant value.

G-14. Ramtek common. FLIK provides capabilities to access the
Ramtek "common" area. For background information on Ramtek
memory segmentation and allocation, absolute addressing, the
Ramtek common, and the FLIK linker, see below.

a. Segments, allocation, and absolute addresses. The Ramtek
itself provides 16 segments of display list memory, where one
segment is the special "common" area and the other 15 are the
normal segments provided to contain display list programs. Note
that the extended memory option increases the available display
list memory. Before it is used, a normal segment must be
allocated to contain from one to four blocks of physical memory,
4096 bytes each. The block size of the accessable "common" area
varies as explained below. A single normal segment may contain
one or more display lists. All display lists in a given segment
access display list memory with a range of address values from
8000 to BFFF hexadecimal (hex), thereby including all four
possible 4096 byte blocks. Addresses from 8000 to 8FFF hex
access memory in the first block, from 9000 to 9FFF hexadecimal
access the second block, from AOOO to AFFF hex access the third
block, and BOO to BFFF access memory in the fourth block. The
Ramtek provides that same address range to display lists working
in any of the 15 mal segments.

b. Common area size and access. The "common" area always
has four 4096 byte blocks. Omission of any of the four possible
blocks from a normal segment's allocation allows display lists in
that segment to access those corresponding blocks in the "common"
area. Therefore, display lists in a three-block normal segment
with addresses 8000 to AFFF hex can access the highest block of
"common" with addresses BOO to BFFF hex; display lists in a two
block normal segment with addresses 8000 to 9FFF hex can access

G-15

F - -

the two highest blocks of "common" with addresses AOOO to BFFF
hex; and display lists in a one-block normal segment with
addresses 8000 to 8FFF hex can access the three highest blocks of
"common" with addresses 9000 to BFFF hex. The most "common" area
available to display lists loaded in a normal segment is three
blocks, from 9000 to BFFF hex.

c. FLIK handling of segment and Ramtek "common". The FLIK
logic that links display lists and handles Ramtek "common"
conforms to the addressing rules stated above. Provided with an
input list of display lists, the FLIK linker makes several passes
through that list. One pass builds a "common" area usage table
containing the size of all required "common" area spaces, the
variables those spaces contain, and which display list(s) require
them. These spaces are analagous to FORTRAN named common areas
and are a FLIK, not a Ramtek, concept. A subsequent pass of the
linker builds segments for subsequent loading in the Ramtek
display list memory. It builds one or more normal segments from
the display lists named in the input list, and builds the
"common" area segment from the table of required "common" area
spaces. The linker puts each display list that accesses Ramtek
"common" into a normal segment short enough to allow that display
list to access addresses within the block(s) of "common" area
that contain the "common" area spaces required by that display
list.

d. FLIK user-level "common" area facilities. With FLIK, a
display list accesses the Ramtek "common" area using symbolic
names for "common" area spaces and the variables within them.
Several display lists included in the same FLIK display-list link
can intercommunicate using the same "common" space and variable
names resulting in access to the same absolute addresses within
the Ramtek "common" area. In addition, those same display lists
and the host program that "sent" them can communicate with each
other through Ramtek common areas using those same symbolic
"common" space and variable names. To prepare for and use these
facilities, the application must do the following things in the
order shown and in the proper stage of display list operations.

(1) During the define and compile phase, call DL COMMON.
When called during the definition phase, this module defines a
common area and the spaces within it to be accessed by the
current display list. You supply a symbolic common name, a
symbolic variable name, a length, and optional initial value.

(2) After the send phase, call DLCOMMON again. Do so
EXACTLY as you did during the define and compile phase with the
EXACT same arguments. This time, you define a common area and
the spaces within it to be accessed by the host program.

(3) After the send phase and after the DLCOMMON calls
following the send phase, then call DL LAYOUTCMN. DLLAYOUTCMN
completes the common symbol table information for use on the host
side.

G-16

(4) Either before or after the call to the display lists
that use the common areas defined, you can call DL ACCESSCMN.
This module lets you transfer information in either direction
between a host application buffer and Ramtek common. The user
specifies the direction of transfer, the common area symbolic
name, the symbolic-name variable within that area and a word
offset, a number of words to transfer, and a host buffer. Note
that you can transfer several contiguous Ramtek common variables
with a single call to DLACCESSCMN by using a word count set to
the total of the size of all those variables.

WARNING: The order of variables within Ramtek
common memory is the reverse of the order you
declare them with the DL COMMON call. Watch
out for this when transferring several
variables at once between host and Ramtek. The
easiest way to handle this is to reverse the
order of the DL COMMON calls when defining and
compiling and later after the "send" phase.

These facilities allow the host to supply display lists with data
before calling them, and to read back data produced by a display
list after the display list has executed.

G-15. FLIK display list modules. A brief summary of the FLIK
display list modules appears below.

a. Control. These modules determine the display list system
stage of operation. Those stages are: define and compile, link,
send (load), and call.

(1) DL LISTING (ONOFF, FILE): Enables/disables debug
listing to a file during compile, link, or load stages.

(2) DL OPEN (DLNAME): Starts the definition and compile
of a display list.

(3) DL CLOSE: Ends the definition of a display list,
finish compiling it, and save it on a .DLOBJ file.

(4) DLLINK (LENLIST, DL LIST, DL EXE NAME): Links
together one or more display list .DLOBJ files to one .DLEXE
loadable file.

(5) DL SEND (DL EXENAME, LEN-LIST, DLLST): Loads the
display lists contained on one .DLEXE file to Ramtek memory
segments.

(6) DLLOAD (LEN-LIST, DLLST, ALREADY IN RAMTEK): Links
one or more display list .DLOBJ files and loads them into
Ramtek. However, do not produce a DLEXE file.

G-17

* innlunu • l unnu

b. Flow control. These modules work during the define and
compile stage, between DLOPEN and DLCLOSE, to insert
instructions into the display list being defined. These
instructions are flow-control instructions for calling other
display lists and for branching within the display list being
defined.

(1) DLCDL (SYM): Inserts a CDL instruction to call
another display list into the display list definition.

(2) DL ENTRY (SYM, IOFF): Inserts no instruction, but
marks a place in this display list definition as an external
symbol, to use as an entry point from outside this display list.

(3) DL DO (IBITl, IBIT2, IBIT3, INDX, Il, 12, 13):
Inserts a DO-ENDDO construct into the display list definition.
Nesting of DO-ENDOs is permitted. The first three arguments
describe the last three arguments. This construct requires you
to specify a display list register to use as the loop index. The
loop has the usual three control parameters--initial, end, and
increment, specified as last three arguments. Any of those three
parameters can be either constants or contained at run time as
indicated by the first three arguments. Note that the increment
parameter value can be negative as well as positive.

(4) DL ENDDO: Places the bottom of the innermost
DO-ENDDO construct currently open.

(5) DLIF (IBIT, IDLR, CNDX, IP2): Inserts the start of
an IFTHEN-ENDIF or IFTHEN-ELSE-ENDIF construct into the display
list definition. Similar to the DO-ENDDO, the first argument
describes the last argument. This construct tests a display list
register's contents at run time against the last argument, using
the specified condition. The last argument can be either a
constant or the contents at run time of another display list
register, as indicated by the first argument. is allowed.

(6) DLELSE: Inserts the ELSE portion of an
IFTHEN-ELSE-ENDIF construct into the display list definition.

(7) DL ENDIF: Inserts the ENDIF portion of either the
IFTHEN-ELSE-ENDIF or IFTHEN-ENDIF construct into the display list
definition.

(8) DLJDIA (IDLR, IBIT, COND, SYM, IOFF): Inserts the
standard Ramtek jump on display list register instruction into
the display list definition. This includes the specified
register, the bit selector option, the type of test, the local
label to branchi to, and an optional offset from that label.

(9) DL LABEL (SYM, 1OFF): Marks a place in the display
list definition with a local label.

G-18

m,.~. ~..-

c. Code. These modules also insert Ramtek code into display
list definitions but they do not pertain to branching or calling
other display lists as did the modules in the previous section.

(1) DLMEM (FCT, IDLR, SYM, IOFF): Inserts a load
display list register, or a store display list register
instruction into the display list definition. The first argument
specifies "LDLR" or "STDLR". You use a local or common-area
symbol and an optional offset to specify the memory location
involved.

(2) DL MEMR (FCT, IDLR, SYM, IDLROFF, IDLRADDR):
Similar to the above, inserts a load or store instruction into
the display list definition. The difference is that the offset
from the local or common-area symbol is calculated at run time
and saved in a second display list register. You need to supply
a third display list register to use as a scratch for
calculations.

(3) DL MEMI (FCT, IDLR, IADRS_DLR): Similar to the
above, inserts a load or store instruction into the display list
definition. However, in this case, at run, time the memory
address is contained time in the second register specified.

(4) DLSDLRMEM (IDLR, SYM, IOFF): Inserts a set display
list instruction into the display list definition. The value to
set into the specified display list register is (after compiling
and linking) the absolute address of the specified local or
common-area symbol, optional offset included.

(5) DL R2R (FCT, IBIT, IR, IR2, IR3): Inserts one of the
many register-to-register instructions (such as "add display list
register", "exclusive-or display list register", "multiply
display list register", etc.) into the display list definition.
The function argument determines which instruction to insert.
All these instructions have two modes of operation, specified by
IBIT. Ramtek calls this the "immediate" bit. When IBIT=O, this
sets the register specified by IR to the result of applying the
specified operation to the registers specified by IR2 and IR3.
When IBIT=l, this sets the register specified by IR to the result
of applying the specified operation to IR and the constant (NOT
THE REGISTER) specified by IR2.

(6) DL DATA (SYM, ISIZE, INIT): Reserves space at the
end of the display list definition for local variables. You
specify the symbolic name, the number of words, and a value to
place in all those words.

(7) DLSLCF (HBIT, IDEVICE, ICONTEXT, IFONT, SYM):
Inserts a "set local cursor function table" instruction into the
display list definition. This instruction, when later executed,
will make an entry in the local cursor function table. That
entry will tell the Ramtek to respond to cursor or puck activity
by executing instructions in display list memory, starting at a

G-19

-

specified memory location. There is also an option to notify the
host at that time. HBIT controls that option. IDEVICE specifies
which cursor or tablet to use. ICONTEXT specifies the Ramtek
context. IFONT specifies the font to use. SYM specifies the
external FLIK display list entry point name for the starting
point in display list memory.

(8) DLCOP (IX, IY): Prepares an (x,y) coordinate for
inclusion in a set instruction to subsequently be inserted into
the display list definition.

(9) DL SIZ (XSIZE, YSIZE): Prepares a width and height
size for inclusion in a set instruction to be inserted into the
display list definition.

(10) DL SET: Inserts the prepared parameters specified
above into the display list definition.

d. Multistage modules. Each of the modules shown below
works either during all display list stages or during two of
those stages--the define and compile stage and the call stage.
When used during the define and compile stage, each of these
modules inserts instructions or otherwise contribute to the
display list definition. The same modules used in other stages
make no such contribution but have another effect.

(1) DLCOMMON (CMNNAME, SYM, ISIZE, INIT): Using
symbolic names, defines a variable in a named Ramtek "common"
space. This module works during the definition stage and after
the send stage. The variables fill the "common" space from high
to low address. You specify the number of words in the variable
and have the option to initialize all those words to a nonzero
value.

(2) DL _DDLR (IBIT, IDLR): Either inserts into the
display list definition, or executes immediately, an instruction
to decrement the specified display list register by a value of
one or two.

(3) DL IDLR (IBIT, IDLR): Either inserts into the
display list definition, or executes immediately, an instruction
to increment the specified display list register by a value of
one or two.

(4) DL PLDLR (IDLR, FCT, IDEV): Either inserts into the
display list definition, or executes immediately, a "parameter
load display list register" instruction. This instruction places
the specified information into one or more display list
registers. Most of these data come from a cursor or tablet.

(5) DL CLCF (IDEV): Either insert into the display list
definition, or execute immediately, a "clear local cursor
function table" instruction. This instruction removes the entry
in the local symbol table for the specified device.

G-20

e. Post send stage. These facilities work only after
sending a file of linked display lists to the Ramtek.

(1) DL LAYOUTCMN: You call this module after one or more
calls made, post send stage, to DLCOMMON. This module completes
the tables started by DLCOMMON that describe the "common" area
spaces on the Ramtek. Remember, you must be sure that you use
the exact same DL COMMON calls here as you did during the
definition and compile stage.

(2) DL CALL (SYM): Starts the execution of a display
list contained in a file of linked display lists already sent to
the Ramtek.

(3) DL ENTRYADDR (SYM, IABS, ISEG, IERR): Host gets the
absolute byte address and segment number of an external entry
point within an already-sent display list.

(4) DL ACCESSCMN (FCT, AREA, LCLSYM, IOFF, IBUF, LENW,
IERR): Host transfers data in either direction between word(s)
in a pre-loaded Ramtek named commons and a host buffer. You
specify the common and starting word within it by a symbolic
common and variable name and a word offset. You specify a host
buffer variable and a number of words to transfer. If you are
moving data with one of these calls for more than one symbolic
variable in Ramtek common,

WARNING: The order of variables in Ramtek
common is backwards from the order that you
declare them using the DL COMMON calls. For
example, two five-word variables named ALPHA
and BETA would reside from low to high word in
Ramtek common as BETA 1 through BETA 5, then
ALPHA 1 through ALPHA 5. If you transfer 10
words starting at ALPHA 1 back to the host,
these will not include any of BETA. You would
need to transfer 10 words starting at BETA 1 to
pick up all of BETA and ALPHA. You could
instead make two calls to DLACCESSCMN, one for
five words in ALPHA, and the other for five
words in BETA.

(5) DL ADDR (AREA, LCLSYM, IOFF, IADR, ISEG, IERR): Host
gets the absolute byte address and segment number of a local
variable in Ramtek common.

(6) DLALCON (ICONTEXT): Allocates a context.

(7) DLDECON: Deallocates a context.

(8) DL SET LCF (HBIT, IDEVICE, ICONTEXT, IFONT, SYM): At
run time executes a "set local function table" instruction to
make an entry in the local cursor function table. When someone

G-21

uses the specified cursor or puck, this entry tells the Ramtek to
execute display list instructions starting at the specified
point. There is also an option that controls whether or not the
Ramtek should notify the host when this occurs. HBIT controls
that option. IDEVICE picks the cursor or tablet to respond to.
ICONTEXT selects the context to switch to during execution of the
display list, and IFONT selects the font type to use during that
time. SYM is the external FLIK display list entry point label at
which display execution is to begin when the user operates the
puck or cursor.

f. Internal modules. There are additional modules contained
within the FLIK-DL system that we do not show here. Those are
lower level modules that operate during the various stages to
help define, compile, link, or load display lists. They are not
meant to be called by the application.

G-16. Etch-sketch example. The following example can be very
complicated. We suggest that you familiarize yourself with
paragraph G-15 of this document and with the Ramtek Software
Reference Manual.

a. Major etch-sketch functions. The major function of
etch-sketch allows you to use the puck to draw a picture
containing lines, circles, and filled areas, to change drawing
colors, and to end a picture. Etch-sketch saves every
tablet-puck action as word-triples in Ramtek common. The host
application that sent etch-sketch to the Ramtek waits in a tablet
read for the picture entry to finish. When it does, the host
application can read back from Ramtek common all the word-triples
for your tablet-puck inputs that produced the picture. The host
application can save those tablet-puck actions on disk; thus,
another application can subseqv.'ntly play back the picture you
entered.

b. Special features. The etch-sketch display list contains
several special features not found in ordinary display lists.
These include display list activation through entries in the
local cursor function table, modification of those entries by the
display list itself to change which of its own sections is
activated and to interrupt the host only when appropriate,
interpretation of puck chords, and self-modification of display
list code. We explain each of these special features in detail
below.

(1) We designed this etch-sketch display list to execute
differently than does a normal display list, using the concepts
described in paragraph G-10. Rather than being called by another
display list or the host, the etch-sketch code runs in response
to tablet actions via the local cursor function table.
Etch-sketch has two main sections each with its own entry points
and corresponding external symbolic name. Only one of those
entry points goes into the local cursor function table at any
given time. When someone operates the tablet puck the Ramtek

G-22

starts execution of etch-sketch at its entry point currently set
in the table. The normal etch-sketch table entry has the H-BIT
reset so no host interrupts occur when etch-sketch executes.
Etch-sketch has the ability to change which of its sections
executes as a result of puck operation and to enable the host
interrupt for that execution. To make this change, etch-sketch
clears the current entry in the local cursor function table, then
sets a new entry containing the address of the new entry point in
etch-sketch and sets the H-BIT in that entry. Then, on the next
puck action, the Ramtek will execute that different section of
etch-sketch and interrupt the host.

(2) A tablet action starts the execution of etch-sketch
through the local cursor function table and consists of (x,y)
coordinates and a status including settings of the four puck
buttons. Etch-sketch reads these data into display list
registers using the parameter load display list register (PLDLR)
instruction, then converts the four puck button settings (the low
four status word bits) into a value from zero to 15. value
selects the etch-sketch function for this puck action.

(3) Use of the puck buttons is somewhat unusual. You use
them either individually or in "chords" to specify the type of
etch sketch function--move, draw, dash, color up or down, fill,
circle, etc. Since there are more than four etch-sketch
functions we had to go to these "chords".

(4) Etch-sketch normally works with the tablet in
"trailing-edge only" mode where a tablet action occurs only when
you release the last puck button that had been depressed. Use of
chords requires this approach. For some functions, however
etch-sketch requires the tablet to operate in "track plus
trailing-edge" mode. Along with the usual tablet actions from
final puck button releases, this mode generates a stream of
actions as the user holds down the puck button(s) and slides the
puck across the tablet surface. During its execution, the
etch-sketch display list can issue set tablet mode (STM)
instructions to change between "trailing-edge only" mode and
"track plus trailing-edge" mode. It does so when switching in
and out of functions requiring the "track plus trailing-edge"
mode.

(5) Etch-sketch performs the graphics commands you enter
with tablet puck actions. To do so requires that etch-sketch
execute standard Ramtek graphics instructions. However, with the
tablet puck, you have specified some of the necessary parameters
(such as coordinates, colors, etc.) that those standard Ramtek
graphics instructions require to be set prior to their execution.
To meet that requirement, etch-sketch must execute some
self-modification code. The instructions requiring modification
reside in known locations in display list memory. (FLIK allows
local symbloic names for them). The self-modification consists
of storing the required values into those locations. After those
store operations, etch-sketch can execute the dynamically

G-23

modified standard Ramtek graphics instructions that now contain
the values for coordinates, color, etc, that you entered with the
tablet puck.

c. Etch-sketch common. This is a file of FORTRAN executable
code to include in both of the following programs. It contains
the Ramtek common-area description required by both the
etch-sketch display list and the host program that reads back the
sketched picture. The common includes room for current (x,y),
foreground color, current etch-sketch action, maximum allowed
size of the space for word-triples, and the large area to receive
your tablet inputs, in the form of three words each.

CALL DLCOMMON ('C1', 'COPX', 1, 0)
CALL DLCOMMON ('Cl', 'COPY', 1, 0)
CALL DLCOMMON ('C1', 'JSAVE', 1, 0)
CALL DLCOMMON ('Cl', 'FGCOL', 1, 0)
CALL DLCOMMON ('C1', 'IFUNC', 1, 0)
CALL DLCOMMON ('Cl', 'IPTR', 1, 0)
CALL DLCOMMON ('Cl', "MPTR', 1, 0)
CALL DLCOMMON ('C1', 'STAT_XY', 3000, 0)

! ROOM FOR 1000 POINTS.
d. Logic flow. Etch-sketch contains two main sections--the

main section and a termination section. The main section does a
termination check, all tablet inputs, storage of input data, all
changes of function, and all graphics display response. The
termination section disables the tablet input and interrupts the
host that should be waiting for a tablet input.

(1) The main etch-sketch code first checks for potential
overflow of the Ramtek common where etch-sketch stores
tablet-puck actions. If no space remains, etch-sketch branches
to its "quit" code. Otherwise, the etch-sketch will process the
current puck hit.

(2) As long as there remains room in the Ramtek common to
save puck actions, the etch-sketch main code continues to
execute. It gets the current tablet coordinates and status and
determines the etch-sketch function selected by the puck buttons.
It also gets the cursor coordinates. These tablet and cursor
data not in display list registers and the current color and the
saved actions in Ramtek common constitute the main data elements
that etch-sketch manipulates.

(3) The main section of etch-sketch then compares the
current action to the last one, to keep current the action label
on screen, and to control the way the puck responds to the user.
If this is a different action, etch-sketch draws the name of the
new action in the upper left corner of the screen. If changing
to the draw function, etch-sketch enables track mode for the
tablet, along with the trailing-edge normally used. This lets
the user draw smooth lines made of many points. If changing from
the draw function to a different function, then etch-sketch
restores the tablet mode to trailing-edge only.

G-24

a.m - -ml m I I II•• I I I

(4) After handling changes in its current function, the
main section of etch-sketch has select cases on each of the
available puck-selected functions. Most select cases contain
code to carry out the action you entered. For graphics actions
such as draw, point, move, circle, fill, etch-sketch executes
graphics display instructions that require coordinates. For
change-color actions, etch-sketch executes set-parameter
instructions that require color numbers. These instructions
requiring coordinates and colors reside at known locations in
display list memory and etch-sketch must execute
self-modification code (as described above) to store the correct
parameters in them before execution.

(5) The etch-sketch enters this termination logic to end
a picture entry for two reasons: no more available words in
Ramtek common space or user pushes the QUIT button. Note that
the host application that sends the etch-sketch to the Ramtek
must set a word in Ramtek common containing the maximum space
allowed for etch-sketch inputs. This way the host sets a limit
on the complexity of the picture. In either end-picture case,
the etch-sketch display list branches to the quit code. That
code changes the local cursor function table as described above
in paragraph G-10. So, after running out of allowed space for a
picture, or after pushing the QUIT button, the next puck hit
causes the Ramtek to notify the host and jump to the end entry
point. At that end entry point the display list makes the cursor
invisible. It is up to the host program to disable local
function status to prevent the etch-sketch from continuing to
operate every time someone pushes the puck buttons.

e. Etch-sketch example. This example shows a relatively
significant display list. As in the simple display list example,
there are three sections: an application to define and compile
an etch-sketch display list, use of the off-line linker, and an
application to send the etch-sketch display list, wait for user
to finish a picture, then read back that picture and save it on
disk.

(1) Define and compile. This program contains the calls
to define and compile the etch-sketch display list. As part of
the definition, it uses the include file shown above to describe
the Ramtek common layout.

PROGRAM DRAW4
CC **
cc
CC THIS PROGRAM CREATES A DISPLAY LIST TO DO ETCH-SKETCHES.
CC ANOTHER PROGRAM, TRYDRAW4, USES THIS ETCH-SKETCH DL TO
CC INPUT PICTURES TO THE HOST COMPUTER. THE USER ENTERS
CC THE PICTURE ON THE RM, WITHOUT HOST INTERVENTION THEN
CC ON PUSHING A 'QUIT' PUCK BUTTON, THE HOST WAKES UP AND
CC READS BACK THE PICTURE.
CC YOU NEED A 4-BUTTON PUCK. THIS DL LETS YOU SELECT

G-25

CC ETCH-SKETCH FUNCTIONS USING COMBINATIONS
CC OF ONE OR MORE BUTTONS ON THE PUCK.
CC IF YOU NUMBER THE BUTTONS AS FOLLOWS:
CC
CC 1 = YELLOW
CC 2 = WHITE
CC 3 = GREEN
CC 4 = BLUE
CC
CC THEN, THE ETCH-SKETCH DL GIVES YOU THESE FUNCTIONS.
CC
CC 1 = DRAW
CC 2 = MOVE
CC 4 = DOT
CC 1 + 2 = DECREMENT COLOR
CC 1 + 4 = INCREMENT COLOR
CC 1 + 3 = FILL
CC 2 + 3 = CIRCLE
CC
CC WHEN TRYDRAW4 USES DRAW4 DL, IT MUST SET LOCAL FUNCTION STATE
CC FOR CURSORS, AND SET LOCAL CURSOR FUNCTION TO JUMP TO
CC 'DRAW4' DL-NAME.
CC
CC THERE IS AN AREA OF RM COMMON SET ASIDE FOR COMMO BETWEEN
CC HOST AND THIS DL. FILE ' DRAW4.DLCMN' CONTAINS CALLS THAT
CC DEFINE ITS CONTENTS.
CC
CC **

CHARACTER * 6 FCT, SYM, COND
INTEGER * 2 MSG (80)
INTEGER * 4 IBIT, IR, IP2, IP3

CC
PARAMETER NLVL = 1
PARAMETER IDIM = 8
INTEGER * 2 NPPL (NLVL)
INTEGER * 2 ICOLIN (IDIM, NLVL)

CC
DATA MSG /80 * "0700'X/

CC
DATA NPPL /3/
DATA ICOLIN /'O00'X, ! BLACK
• 'FOO'X, ! RED
• 'OFO'X, ! GREEN
• '00F'X, ! BLUE
• 'FFO'X, ! YELLOW
• 'OFF'X, ! CYAN
• 'FOF'X, ! PURPLE
• 'FFF'X / ! WHITE
CALL KRMINIT (1280, 1024, 4, MON)
CALL KOVRDEF (NLVL, NPPL, ICOLIN, IDIM)

CC DRAW AN ELLIPSE IN COLOR 2
CALL KFLUSH

CC ASSIGN USES TO THE VARIOUS DL REGISTERS.
IDLRTEMP = 0

G-26

_AL.

IDLRFLAG = 1
IDLR_STXY = 2
IDLR_IPTR = 4
IDLR_MPTR = 3
IDLR_TEST = 5
IDLRCURS = 5
IDLRTAB = 8
IDLRCOPG = i1
ITABRNUM = 0
ICONTEXT = 0

CC OPEN THE DISPLAY LIST
CALL DL LISTING (.TRUE., .TRUE.)

CC OPEN 'DRAW4' DL.
CALL DL OPEN ('ODLDATA:DRAW4')

CC DEFINE COMMON BLOCK 'Cl'.
INCLUDE '[DRAW3. DLCMN/NOLIST'

CC RETRIEVE THE CURRENT NUMBER OF ENTRIES, AND
CC THE MAX REQUESTED NO. OF ENTRIES.

CALL DL MEM ('LDLR', IDLRIPTR, 'IPTR',)
! CUR # OF TRIPLES IN BUF

CALL DL MEM ('LDLR', IDLRMPTR, 'MPTR',
CC QUIT IF CURRENT EQUALS MAX, WITH
CC A LOCAL JUMP TO THE STOP SECTION.

CALL DLR2R ('SUBDLR', 0, IDLRTEST, IDLRIPTR, IDLRMPTR)
CALL DLJDLR (IDLR TEST, 0, 'EQ', 'ZSTOP',

CC THERE ARE THREE WORDS PER ENTRY.
CC CONVERT FROM ENTRY COUNT TO WORD COUNT
CC TO BYTE COUNT.

CALL DLR2R ('MULDLR', 1, IDLRIPTR, 3, 0)
CALL DLR2R ('MULDLR', 2, IDLRIPTR, 2, 0)

CC GET THE STARTING BYTE ADDR IN RM COMMON FOR THE
CC BUFFER TO CONTAIN THESE ENTRIES, AND
CC INCREMENT BY THE DISPLACEMENT TO THE ADDR FOR
CC THE NEXT ENTRY.

CALL DLSDLRMEM (IDLRSTXY, 'STAT XY',
CALL DLR2R ('ADLR', 0, 2, IDLRSTXY, IDLRIPTR)

! DISPLACEMENT ADDR
CC LOAD INTO THREE REGISTERS THE CURRENT
CC CURSOR X, Y, AND STATUS.

CALL DLPLDLR (IDLRCURS, 'CURS', ITABNUM)
CC LOAD INTO THREE REGISTERS THE CURRENT
CC TABLET X, Y, AND STATUS.

CALL DLPLDLR (IDLR TAB, 'TAB', ITABNUM)
CC LOAD INTO TWO REGISTERS THE CURRENT
CC GLOBAL CURRENT-OPERATING-POINT.

CALL DLPLDLR (IDLRCOPG, 'COPG', 0)
CC COPY TABLET STATUS TO FLAG REGISTER, AND
CC RETAIN THE LOW FOUR BITS, FOR THE FOUR PUCK
CC BUTTONS.

CALL DLR2R ('ORDLR', 0, IDLRFLAG,IDLRTAB+2,IDLRTAB+2)
CALL DLR2R ('ANDDLR', 1, IDLRFLAG, '00OF'X,)

CC IF NO PUCK BUTTONS SET, RETURN.
CALL DLIF (1, IDLR FLAG, 'EQ', 0)

CC DO NOTHING BUT EXIT.

G-27

CALL KRETDL
CALL DLENDIF

CC IF LAST TABLET BUTTON RELEASED,
CC PROCESS TRAILING-EDGE CNDX.

CALL DLJDLR (IDLRTAB+2, 14, 'SET', 'ZTE',
CC IF FIRST TABLET BUTTON PUSHED,
CC PROCESS LEADING-EDGE CNDX.

CALL DLJDLR (IDLRTAB+2, 13, 'SET', 'ZEN',)
CC IF JUST TRACK-MODE FROM TABLET,
CC PROCESS TRACK-MODE CNDX.

CALl DLJDLR (IDLRTAB+2, 0, 'GOTO', 'ZTK',
CC
CC

1030 CALL DLLABEL ('ZTE',
CC LAST BUTTON RELEASED.
CC NO SPECIAL PROCESSING. JUMP TO NORMAL CODE.

CALL DLJDLR (IDLRTAB+2, 0, 'GOTO', 'Z_RUN',
CC
1032 CALL DLLABEL ('ZEN',)

CC FIRST BUTTON PRESSED DOWN.
CC CAN'T DO ANYTHING WITH THIS INFO, SO
CC EXIT THE DL.

CALL KRETDL
CC
1033 CALL DL LABEL ('Z TK',)

CC TRACK MODE ONLY.
CC NO SPECIAL PROCESSING. JUMP TO NORMAL CODE.

CALL DLJDLR (IDLRTEMP, 0, 'GOTO', 'Z_RUN',
CC
1035 CALL DLLABEL ('Z RUN',

CC COMPARE THE CURRENT FUNCTION IN THE FLAG
CC REGISTER WITH THE PREVIOUS FUNCTION.
CC IF THE SAME, JUMP TO 'CONTINUE' CODE.

CALL DLMEM ('LDLR', IDLRTEMP, 'IFUNC',)
CALL DLMEM ('LDLR', IDLRLAST, 'IFUNC',)
CALL DLR2R ('SUBDLR', 0, IDLRTEMP, IDLR TEMP, IDLRFLAG)
CALL DL-JDLR (IDLR TEMP, 0, 'EQ', 'ZCONT',

cc
1040 CALL DLLABEL ('ZCHANGE',)

CC SAVE NEW DL FUNCTION IN RM COMMON.
CALL DLMEM ('STDLR', IDLRFLAG, 'IFUNC',)

CC IF LAST OPERATION WAS A RUN, THEN CHANGE BACK
CC TO TE-ONLY ON TABLET.

CALL DLIF (1, IDLRLAST, 'EQ', 1)
CC SET THE TABLET TO INTERRUPT IN TWO CASES:
CC TE = WHEN USER RELEASES THE LAST OF ONE OR MORE
CC BUTTONS THAT WERE DEPRESSED.

ISTAT = '4000'X + '0100'X + + '0F'X
! (TE+TK) + TD + (F3+F2+FI+FO)

CALL KWTABST (ITABNUM, ISTAT, 4, 4)
CALL DLENDIF

CC
CC
CC SELECT CASE -- CHANGE TO MOVE

G-28

CALL DLIF (1, IDLRFLAG, 'EQ', 2)
CALL KWCTEXT (0, 20, 4, 'MOVE', 4)

CALL DLENDIF
CC

CC SELECT CASE -- CHANGE TO DRAW
CALL DL IF (1, IDLRFLAG, 'EQ', 1)

CALL KWCTEXT (0, 20, 4, 'DRAW', 4)
CC SET THE TABLET TO INTERRUPT IN TWO CASES:
CC TK = WHEN USER HOLDS DOWN AT LEAST ONE BUTTON AND
CC MOVES THE PUCK.
CC TE = WHEN USER RELEASES THE LAST OF ONE OR MORE
CC BUTTONS THAT WERE DEPRESSED.

ISTAT = '5000'X + '0100'X + + '0F'X
! (TE+TK) + TD + (F3+F2+F1+FO)

CALL KWTABST (ITABNUM, ISTAT, 4, 4)
CALL DLENDIF

CC
CC SELECT CASE -- CHANGE TO POINT

CALL DLIF (1, IDLR FLAG, 'EQ', 8)
CALL KWCTEXT (0, 20, 4, 'DOT ', 4)

CALL DLENDIF
CC
CC SELECT CASE -- CHANGE TO CIRCLE

CALL DL IF (1, IDLR FLAG, 'EQ', 6)
CALL KWCTEXT (0, 20, 4, 'CIRC', 4)

CALL DLENDIF
CC
CC SELECT CASE -- CHANGE TO FILL

CALL DL IF (1, IDLRFLAG, 'EQ', 5)
CALL KWCTEXT (0, 20, 4, 'FILL', 4)

CALL DLENDIF
CC
CC SELECT CASE -- CHANGE TO QUIT

CALL DL IF (1, IDLR FLAG, 'EQ', 4)
CALL KWCTEXT (0, 20, 4, 'QUIT', 4)

CALL DLENDIF
CC
1100 CALL DLLABEL ('ZCONT',)

CC
CC COMPUTED GOTO ON THE FOUR PUCK BUTTONS IN THE FLAG REGISTER.
CC
CC

CC SELECT CASE -- INCREMENT COLOR
CC LOAD THE CURRENT COLOR INTO TEMP REGISTER,
CC INCREMENT BY ONE. THEN JUMP TO COLOR-SET
CC CODE.

CALL DL IF (1, IDLRFLAG, 'EQ', 9)
CALL DL MEM ('LDLR', IDLRTEMP, 'FGCOL',)
CALL DLIDLR (0, IDLRTEMP)

CC
CC SAVE NEW COLOR IN COMMON, THEN
CC MODIFY THE SUBSEQUENT DISPLAY-LIST
CC SET COMMAND TO CONTAIN THE NEW COLOR
CC VALUE.

G-29

CALL DL HEM ('STDLR', IDLRTEMP, 'FGCOL',
CALL DLMEM ('STDLR', IDLR_TEMP, 'FGC+',)
CALL KOCOLOR (1)
CALL DL LABEL ('FGC+', -1)
CALL KWCTEXT (0, 20, 4, 'COL+', 4)

CC MOVE BACK TO THE CURSOR POSITION FOR THIS
CC ENTRY BY STORING IT FROM REGISTERS INTO
CC THIS DL CODE, AS THE TWO COP WORDS IN THE SET
CC INSTRUCTION RESULTING FROM 'KMOVEA'.

CALL DL MEM ('STDLR', IDLRCURS, 'COLMOVEX+',
CALL DL MEM ('STDLR', IDLRCURS+l, 'COLMOVEY+',
CALL KMOVEA (0, 0)
CALL DLLABEL ('COLMOVEX+', -2)
CALL DL_LABEL ('COLMOVEY+', -1)

CC PUT THE CURRENT COLOR INTO THE
CC REGISTER TO BE SAVED AS SECOND WORD OF THE
CC ENTRY TRIPLE... USUALLY RESERVED FOR X COORD.

CALL DL MEM ('LDLR', IDLRCURS, 'FGCOL',)
CALL DL ENDIF

CC
CC SELECT CASE -- DECREMENT COLOR
CC LOAD THE CURRENT COLOR INTO TEMP REGISTER,
CC DECREMENT BY ONE. THEN JUMP TO COLOR-SET
CC CODE.

CALL DL IF (1, IDLRFLAG, 'EQ', 3)
CALL DL MEM ('LDLR', IDLR TEMP, 'FGCOL',
CALL DLDDLR (0, IDLR-TEMP)

CC
CC SAVE NEW COLOR IN COMMON, THEN
CC MODIFY THE SUBSEQUENT DISPLAY-LIST
CC SET COMMAND TO CONTAIN THE NEW COLOR
CC VALUE.

CALL DL MEM ('STDLR', IDLRTEMP, 'FGCOL',
CALL DL MEM ('STDLR', IDLRTEMP, 'FGC-',)
CALL KOCOLOR (1)
CALL DL LABEL ('FGC-', -1)
CALL KWCTEXT (0, 20, 4, 'COL-', 4)

CC MOVE BACK TO THE CURSOR POSITION FOR THIS
CC ENTRY BY STORING IT FROM REGISTERS INTO
CC THIS DL CODE, AS THE TWO COP WORDS IN THE SET
CC INSTRUCTION RESULTING FROM 'KMOVEA'.

CALL DL MEM ('STDLR', IDLR CURS, 'COLMOVEX-',
CALL DL MEM ('STDLR', IDLR_CURS+1, 'COLMOVEY-',
CALL KMOVEA (0, 0)
CALL DL LABEL ('COLMOVEX-', -2)
CALL DLLABEL ('COLMOVEY-', -1)

CC PUT THE CURRENT COLOR INTO THE
CC REGISTER TO BE SAVED AS SECOND WORD OF THE
CC ENTRY TRIPLE... USUALLY RESERVED FOR X COORD.

CALL DL MEM ('LDLR', IDLRCURS, 'FGCOL',)
CALL DLENDIF

CC SELECT CASE -- MOVE.
CC MOVE TO THE CURSOR POSITION FOR THIS
CC ENTRY BY STORING IT FROM REGISTERS INTO

G-30

m h mmmlm m m m • m~~m mmmmm m • • mm m mmmm mmm

CC THIS DL CODE, AS THE TWO COP WORDS IN THE SET
CC INSTRUCTION RESULTING FROM 'KMOVEA'.

CALL DL IF (1, IDLRFLAG, 'EQ', 2)
CALL DL MEM ('STDLR', IDLRCURS, 'MOVEX',
CALL DLMEM ('STDLR', IDLR_CURS+I, 'MOVEY',)
CALL KMOVEA (0, 0)
CALL DL LABEL ('MOVEX', -2)
CALL DLLABEL ('MOVEY', -1)

CC SAVE THIS CURSOR XY IN COMMON FOR LATER USE
CC AS COP.

CALL DL MEM ('STDLR', IDLR CURS, 'COPX',)
CALL DL MEM ('STDLR', IDLR_CURS+I, 'COPY',)

CALL DLENDIF
CC

CC SELECT CASE -- DRAW
CC LOAD THE SAVED COP FROM COMMON INTO REGISTERS.

CALL DLIF (1, IDLRFLAG, 'EQ', 1)
CALL DL MEM ('LDLR', IDLR COPG, 'COPX',
CALL DL MEM ('LDLR', IDLR_COPG+1, 'COPY',)

CC MOVE TO THE CURRENT OPERATION POSITION FOR LAST
CC ENTRY BY STORING IT FROM REGISTERS INTO
CC THIS DL CODE, AS THE TWO COP WORDS IN THE SET
CC INSTRUCTION RESULTING FROM 'KMOVEA'.

CALL DL MEM ('STDLR', IDLRCOPG, 'DRAWIX',)
CALL DL MEM ('STDLR', IDLR_COPG+1, 'DRAWlY',)
CALL KMOVEA (0, 0)
CALL DLLABEL ('DRAWiX', -2)
CALL DLLABEL ('DRAWlY', -1)

CC DRAW TO THE CURSOR POSITION FOR THIS
CC ENTRY BY STORING IT FROM REGISTERS INTO
CC THIS DL CODE, AS THE TWO COP WORDS IN THE
CC WRITE-VECTOR-LINKED
CC INSTRUCTION RESULTING FROM 'KLADRAW'.

CALL DL MEM ('STDLR', IDLRCURS, 'DRAW2X',)
CALL DLMEM ('STDLR', IDLRCURS+1, 'DRAW2Y',
CALL KLADRAW (0, 0)
CALL DL LABEL ('DRAW2X', -2)
CALL DLLABEL ('DRAW2Y', -1)

CC SAVE THIS CURSOR XY IN COMMON FOR LATER USE
cc AS COP.

CALL DL MEM ('STDLR', IDLRCURS, 'COPX',)
CALL DLMEM ('STDLR', IDLRCURS+1, 'COPY',)

CALL DLENDIF
CC
CC SELECT CASE -- POINT
CC DRAW A POINT AT THE CURSOR POSITION FOR THIS
CC ENTRY BY STORING IT FROM REGISTERS INTO
CC THIS DL CODE, AS THE TWO COP WORDS IN THE
CC PLOT-POINT INSTRUCTION RESULTING FROM 'KDOT'.

CALL DLIF (1, IDLR_FLAG, 'EQ', 8)
CALL DL MEM ('STDLR', IDLRCURS, 'DOTX',)
CALL DL_MEM ('STDLR', IDLRCURS+I, 'DOTY',
CALL KDOT (0, 0)
CALL DLLABEL ('DOTX', -2)

G-31

'A n5 , ,, . n .

CALL DL LABEL ('DOTY', -1)
CC SAVE THIS CURSOR XY IN COMMON FOR LATER USE
CC AS COP.

CALL DLMEM ('STDLR', IDLRCURS, 'COPX',)
CALL DLMEM ('STDLR', IDLRCURS+I, 'COPY',)

CALL DL_ENDIF
CC
CC SELECT CASE -- CIRCLE
CC KLUGE CODE -- VERY SORRY ABOUT IT.
CC DERIVE RADIUS FOR CIRCLE FROM THE ABS DIFF
CC BETWEEN LAST COP AND CURRENT CURSOR X/Y.
CC THEN, USE CURSOR X/Y AS CENTER.

CALL DLIF (1, IDLR FLAG, 'EQ', 6)
CALL DLMEM ('LDLR', IDLRCOPG, 'COPX',)
CALL DLMEM ('LDLR', IDLR COPG+I, 'COPY',)
CALL DLR2R ('SUBDLR', 0,IDLRTEMP, IDLRCOPG, IDLRCURS)

CC WATCH OUT FOR NEGATIVE RADIUS.
CC IF POSITIVE, JUMP AROUND TO CIRCLE END.

CALL DL IF (1, IDLR TEMP, 'LT', 0)
CC MULTIPLY NEGATIVE RADIUS BY MINUS ONE.

CALL DL R2R ('MULDLR', 1, IDLRTEMP, -1,)
CALL DLENDIF

CC
CC SELF-MODIFYING CODE AGAIN.
CC DRAW A CIRCLE AT THE CURSOR POSITION FOR THIS
CC ENTRY, HAVING THE CALCULATED RADIUS,
CC BY STORING X/Y AND RADIUS IT FROM THREE
CC REGISTERS INTO THIS DL CODE, AS THE TWO
CC CENTER X/Y WORDS AND THE RADIUS WORD IN THE
CC CIRCLE INSTRUCTION, RESULTING FROM 'KCIRCLE'.

CALL DLMEM ('STDLR', IDLRCURS, 'CIRCX',)
CALL DLMEM ('STDLR', IDLRCURS+I, 'CIRCY',)
CALL DLMEM ('STDLR', IDLRTEMP, 'CIRCR',)
CALL KCIRCLE (0, 0, 0)
CALL DL LABEL ('CIRCX', -3)
CALL DLLABEL ('CIRCY', -2)
CALL DL LABEL ('CIRCR', -1)

CC SAVE THIS CURSOR XY IN COMMON FOR LATER USE
CC AS COP.

CALL DLMEM ('STDLR', IDLRCURS, 'COPX',)
CALL DLMEM ('STDLR', IDLRCURS+1, 'COPY',)

CALL DLENDIF

CC SELECT CASE -- FILL
CC FILL AN AREA SURROUNDING THE CURSOR POSITION
CC FOR THIS ENTRY WHILE COLOR IS CONSTANT,
CC BY STORING IT FROM REGISTERS INTO
CC THIS DL CODE, AS THE TWO COP WORDS IN THE
CC FILL INSTRUCTION RESULTING FROM 'KFILL'.

CALL DLIF (1, IDLRFLAG, 'EQ', 5)
CALL DLMEM ('STDLR', IDLRCURS, 'FILLX',)
CALL DLMEM ('STDLR', IDLRCURS+I, 'FILLY',)
CALL KFILL (1, 0, 0)
CALL DLLABEL ('FILLX', -4)

G-32

CALL DL LABEL ('FILLY', -3)
CC SAVE THIS CURSOR XY IN COMMON FOR LATER USE
CC AS COP.

CALL DLMEM ('STDLR', IDLRCURS, 'COPX',)
CALL DLMEM ('STDLR', IDLR_CURS+I, 'COPY',

CALL DLENDIF
CC

CALL DLIF (1, IDLR_FLAG, 'EQ', 4)
CC SELECT CASE -- QUIT (STOP)
CC CLEAR THE LOCAL CURSOR FUNCTION NOW IN USE,
CC AND SET A DIFFERENT LOCAL CURSOR FUNCTION TO
CC JUMP ON INTERRUPT TO A DIFFERENT ENTRY POINT IN
CC THIS DISPLAY LIST, WITH THE H-BIT SET TO
CC INFORM THE HOST COMPUTER THAT SHOULD BE
CC WAITING FOR AN INTERRUPT FROM THE RAMTEK.
CC THIS IS THE MECHANISM TO SYNCHRONIZE THE
CC HOST AND RAMTEK.

CALL DLCLCF (ITABNUM)
CALL DLSLCF (1, ITABNUM, ICONTEXT, , 'DRAW4_END')

CALL DLENDIF
CC
1200 CALL DLLABEL ('ZSTORE',

CC STORE SOFTWARE. COPIES ONE TRIPLE FROM THREE
CC REGISTERS INTO THE COMMON AREA, STARTING AT THE
CC BYTE ADDRESS SPECIFIED BY A FOURTH REGISTER.
CC USES THE REGISTER-TO-MEMORY STORE DLR IMMEDIATE
CC INSTRUCTION. BUMPS THE FOURTH (ADDRESS) REGISTER
CC BY TWO BYTES BETWEEN EACH STORE OPERATION.

CALL DLMEMI ('STDLR', IDLRFLAG, IDLRSTXY)
CALL DLIDLR (1, IDLRSTXY)
CALL DLMEMI ('STDLR', IDLRCURS, IDLRSTXY)
CALL DLIDLR (1, IDLRSTXY)
CALL DLMEMI ('STDLR', IDLR CURS+1, IDLR STXY)
CALL DLMEM ('LDLR', IDLR_IPTR, 'IPTR',

! GET OLD COUNT OF TRIPLES
CC INCREMENT AND SAVE IN COMMON THE COUNT OF THE
CC NUMBER OF TRIPLES.

CALL DLIDLR (0, IDLRIPTR) ! BUMP COUNT
CALL DL MEM ('STDLR', IDLRIPTR, 'IPTR',) ! SAVE NEW COUNT
CALL KRETDL

2000 CALL DLLABEL ('ZSTOP',
CC SELECT CASE -- QUIT (STOP)
CC CLEAR THE LOCAL CURSOR FUNCTION NOW IN USE,
CC AND SET A DIFFERENT LOCAL CURSOR FUNCTION TO
CC JUMP ON INTERRUPT TO A DIFFERENT ENTRY POINT IN
CC THIS DISPLAY LIST, WITH THE H-BIT SET TO
CC INFORM THE HOST COMPUTER.

CALL DLCLCF (ITABNUM)
CALL DL7SLCF (1, ITABNUM, ICONTEXT, , 'DRAW4 END')
CALL KRETDL

CC
5000 CALL DLENTRY ('DRAW4 END',)

CC INTERRUPT COMES HERE WHEN H-BIT IS SET.
CC TURN OFF THE CURSOR.

G-33

* -- - ~ ALI

CALL KWCURS (0, 0, 640, 512)
CC IMPLIED KRETDL FROM THE CLOSE.

CALL DL CLOSE
9990 CONTINUE

STOP
END

(2) Off-line linker. Next, to link the three display
lists you run the off-line display-list linker program as
follows.

$ RUN OFLIKDL:LINKER
MAKE list of DL's to link
DL-name, or <CR> to end ODLDATA:DRAAW4
DL-name, or <CR> to end <cr>
ENTER DL-EXE file name ODLDATA:DRAW4
output a listing? (YIN] [N] Y
DLDLLINK: link phase
DLDLLINK: commons phase
DLDLLINK: positioning phase
DLDLLINK: segment phase
DLLINK: save-EXE phase
DL DLPREP: external 0047 4100 8000
DL7DLPREP: external 0039 4100 8094
LOADED DLS
FORTRAN STOP

(3) Send and wait for interrupt. This program sends the
etch-sketch display list to the Ramtek, defines the same Ramtek
common areas for itself, then waits for a tablet read until
etch-sketch flags that the user finished a picture. Then, this
host program reads back the display list common and saves it on a
VAX disk file for later redrawing.

PROGRAM RUNDRAW4~CC **
CC

CC THIS MODULE TESTS THE DISPLAY LIST NAMED 'DRAW4'.
CC IT LOADS THE DISPLAY LIST AND THEN ENTERS THE MAIN LOOP OF
CC THE PROGRAM.
CC
CC IN ITS MAIN LOOP, THE HOST PROGRAM ASKS YOU FOR A MAX
CC DRAWING LENGTH, AND THEN SETS THAT VALUE
CC AND SOME OTHER VARIABLES IN COMMON ON THE
CC RAMTEK, THEN GOES INTO A WAIT STATE.
cc
CC ON THE RAMTEK, 'DRAW4' USES INTERRUPTS KEPT SOLELY
CC ON THE RAMTEK TO ALLOW YOU TO
CC DRAW PICTURES AND STORE YOUR WORK ON THE RAMTEK
CC IN A BUFFER IN RM COMMON.
CC WHEN YOU FINISH, YOU HIT THE QUIT FUNCTION TWICE, WHICH
CC WILL GENERATE AN INTERRUPT TO THE HOST THAT IS IN A
CC WAIT STATE.

G-34

cc
CC BACK ON THE HOST, AFTER BEING AWAKENED BY AN INTERRUPT FROM
CC THE 'QUIT' IN 'DRAW4' DISPLAY LIST, THE HOST READS BACK THE
CC DRAWING YOU ENTERED FROM THE RAMTEK COMMON INTO A BUFFER ON
CC THE HOST SIDE. THEN, THIS HOST PROGRAM OPENS A FILE, AND
CC SAVES YOUR DRAWING ON THAT FILE. THIS ENDS THE MAIN LOOP, WHICH
CC REPEATS UNTIL YOU ENTER A MAX DRAWING LENGTH OF ZERO.
CC
CC **

CHARACTER * 12 DL LIST (64)
CHARACTER * 1 YESNO
CHARACTER * 12 DLSEL
LOGICAL SEPARATELOAD
LOGICAL ALREADY IN RAMTEK
CHARACTER * 4 MSG1 /'TEST'/
CHARACTER * 8 MSG2 /'TESTING'/
CHARACTER * 16 MSG3 /'THIS IS A TEST'/

CC
REAL * 4 X (5), Y (5)
INTEGER * 2 QWIN (4)

cc
PARAMETER NLVL = 1
PARAMETER IDIM = 16
INTEGER * 2 NPPL (NLVL)
INTEGER * 2 ICOLIN (IDIM, NLVL)
INTEGER * 2 STAT_XY (3, 1000)

CC
CHARACTER * 60 OUTFILE
LOGICAL INITTBUTN

CC
DATA NPPL /3/
DATA ICOLIN /'000'X, ! BLACK

• 'FOO'X, ! RED
• '0FO'X, ! GREEN
• '00F'X, ! BLUE
• 'FFO'X, ! YELLOW
• 'OFF'X, ! CYAN
• 'FOF'X, ! PURPLE
• 'FFF'X, ! WHITE
• '888'X,
• 'F88'X,
• '8F8'X,
• '88F'X,
• 'FF8'X,
• '8FF'X,
• 'F8F'X,
• ' FFF' X/

CC ARRAY FOR VIRTUAL LINE-DRAW TEST
CC

CALL KRMINIT (1280, 1024, 4, MON)
CALL KQWIN (QWIN)
CALL KOVRDEF (NLVL, NPPL, ICOLIN, IDIM)
CALL KFLUSH

CC SET TABLET # FOR THIS MONITOR.

G-35

• ,| m umu mu nnn ' mnn mn mnn nmn •...n.. u...... Nmm~

ITABNUM - 0
CC DEALLOCATE CONTEXT, THEN REALLOFLIKE IT.

ICONTEXT = 0
C CALL DLDECON (ICONTEXT)
C CALL DLALCON (ICONTEXT)
CC DISABLE CURSOR INTERRUPTS ON RAMTEK FOR THAT TABLET,
CC AND CLEAR THE LOCAL CURSOR FUNCTION TABLE FOR THIS
CC TABLET.

CALL KSETLCFS (ITABNUM, 1)
CALL DL CLCF (ITABNUM)

CC SET WRITE MASK, AND BACKGROUND AND FOREGROUND COLORS.
CALL KOVRBUF (1)
CALL KOCOLOR (2)
CALL KOBCOLR (1)

CC SET THE VIDEO ORIGIN TO UPPER LEFT CORNER.
CALL KVO (0)

CC DISABLE DL-PACKAGE LIST OUTPUT.
CALL DLLISTING (.FALSE., .TRUE.)

CCCCCCCALL DLLISTING (.TRUE., .TRUE.)
CC LOAD THE 'DRAW4' DISPLAY LIST FROM FILE TO RAMTEK.

CALL DLSEND ('ODLDATA:DRAW4', NDL, DLLIST)
CC USE DL-COMMON CALLS TO DEFINE FOR THE HOST THE
CC COMMON BLOCK AND ITS VARIABLES USED ON THE RAMTEK.

INCLUDE '[]DRAW3.DLCMN/NOLIST'
CALL DLLAYOUTCMN

CC ASK USER FOR WHICH DL'S TO CALL.
INITTBUTN = .TRUE.

CC
CC ---------- MAIN LOOP
cc

2000 CONTINUE
CC GET THE MAX NO. OF ENTRIES FOR PICTURE.
CC CURRENTLY THERE IS ONLY ROOM FOR 1000.

WRITE (6, '(A, $)')
* ' ENTER max no. of points, or zero to quit '
READ (5, *, ERR = 2000) MPTR
IF (NPTS .GT. 1000) GOTO 2000
IF (MPTR .LE. 0) GOTO 9990

CC
CC

KNT = 0
2010 CONTINUE

CC SET UP INITIAL VARIABLES ON HOST SIDE.
ICOPX = 0
ICOPY = 0
IFGCOL = 1
IFUNC = 0
JSAVE = 0
KNT = KNT + 1
IPTR = 0
DO I = 1, MPTR

DO J = 1, 3
STATXY (J, I) = 0

ENDDO

G-36

ENDDO
CC WRITE THOSE VARIABLES TO THE RAMTEK COMMON.
CC FUNCTION COMMON VARIABLE WORD HOST WORD
CC CODE NAME NAME OFFSET BUF XFER

CALL DLACCESSCMN ('WR', 'Cl', 'COPX', 0, ICOPX, 1,IERR)
CALL DLACCESSCMN ('WR', 'Cl', 'COPY', 0, ICOPY, 1,IERR)
CALL DLACCESSCMN ('WR', 'Cl', 'FGCOL', 0, IFGCOL, 1,IERR)
CALL DLACCESSCMN ('WR', 'CI', 'IFUNC', 0, IFUNC, 1,IERR)
CALL DL"ACCESSCMN ('WR', 'Cl', 'JSAVE", 0, JSAVE, 1,IERR)
CALL DLACCESSCMN ('WR', 'Cl', 'MPTR', 0, MPTR, 1IERR)
CALL DLACCESSCMN ('WR', 'CI', 'IPTR', 0, IPTR, 1,IERR)
CALL DLACCESSCMN ('WR','Cl','STATXY',0, STAT XY,MPTR*3,

* IERR)
D CALL DLADDR ('Cl','STATXY',O, IADDR, ISEG,

* IERR)
D WRITE (6, '(A, Z6.4, Z6.4, 16)')
D * 'IADDR, ISEG, IERR', IADDR, ISEG, IERR
CC SET THE TABLET TO INTERRUPT IN TWO CASES:
CC TK = WHEN USER HOLDS DOWN AT LEAST ONE BUTTON AND
CC MOVES THE PUCK.
CC TE = WHEN USER RELEASES THE LAST OF ONE OR MORE
CC BUTTONS THAT WERE DEPRESSED.

ISTAT = '5000'X + '0100'X + + 'OF'X
! (TE+TK) + TD + (F3+F2+F1+FO)

CALL KWTABST (ITABNUM, ISTAT, 4, 4)
CC MAKE THE CURSOR VISIBLE.

ISTAT = 1
CALL KWCURS (ITABNUM, ISTAT, 640, 512)

CC SET THE FOREGROUND COLOR TO THAT LOADED INTO
CC RAMTEK COMMON.

CALL KOCOLOR (IFGCOL + 1)
CC ENABLE CURSOR INTERRUPTS ON RAMTEK FOR THAT TABLET.

CALL KSETLCFS (ITABNUM, 2)
CC SET THE LOCAL CURSOR FUNCTION FOR THIS TABLET
CC SO THE RAMTEK, ON INTERRUPTS FROM THAT DEVICE,
CC WILL JUMP TO DL-ENTRY POINT 'DRAW4', AND EXECUTE
CC THIS DISPLAY LIST.

IHBIT = 0
CALL DLSETLCF (IHBIT, ITABNUM, ICONTEXT, , 'DRAW4')

CC WAIT UNTIL RAMTEK SENDS BACK AN INTERRUPT.
CALL KRTABST (ITABNUM, IX, IY, ISTAT)

CC READ BACK THE NO. OF PTS ENTERED.
CALL DLACCESSCMN ('RD', 'Cl', 'IPTR', 0, IPTR, 1, IERR)

CC IF THERE ARE POINTS ENTERED, THEN
IF (IPTR .GT. 0) THEN

CC READ BACK THE BUFFER OF POINTS.
CALL DLACCESSCMN ('RD','C1','STATXY',0,

* -- STATXY, IPTR*3, IERR)
CC PREPARE OUTPUT FILE NAME, OPEN FILE, AND
CC SAVE THE PICTURE ON THE FILE.
2020 CONTINUE

WRITE (OUT FILE, '(A, 13.3, A)') 'TRYDRAW4', KNT, '.DAT'
LENF = LASTNONB (OUTFILE)
WRITE (6, '(A, $)')

G-37

* ' Enter OUTFILE, or <CR> = ,OUT-FILE (1 :LENF)
READ (5, '(Q, A)') LENINP, OUT-FILE
IF (LENINP .LE. 0) THEN

WRITE (OUTFILE,
* '(A, 13.3, A)') 'TRYDRAW4', KNT, '.DAT'

ENDIF
OPEN (UNIT - 2, NAME = OUTIFILE,

* TYPE - 'NEW', ERR = 2020)
c

WRITE (6, *)'TRYDRAW4: IPTR = ,IPTR

WRITE (2, *)IPTR, QWIN (3), QWIN (4)
DO I = 1, IPTR

JBUTN = STAT XY (1, I)
CALL DLTBUTR (INIT TBUTN, JBUTN, ISINGLE)
INITTBUTN = .FALSE.

D WRITE (6, '(Z6.4, Z6.4, Z6.4, Z6.4, 16, 1X, 16)')
D *(1-1)*2, JBUTN, ISINGLE, (STATXY (J, I),
D J J=1, 3)

WRITE (2, '(Z6.4, 16, 16)')
*(STATXY (J, I), J 1, 3)
ENDDO
CLOSE (UNIT =2)

ELSE
INITTBUTN = TRUE.
GO TO 2010

ENDI F
GO TO 2000

cc
9990 CONTINUE

STOP
END

G-38

DISTRIBUTION LIST
No. Copies

Defense Technical Information Center 2
ATTN: DTIC, TCA
Cameron Station
Alexandria, VA 22314

US Army Library
Army Study Documentation and Information

Retrieval System (ASDIRS)
ANRAL-RS
ATTN: ASDIRS
Room la518, The Pentagon
Washington, D.C. 20310

US Army TRADOC Analysis Command-WSMR
ATTN: ATRC-WSL (Technical Library)
White Sands Missile Range, NM 88002-5502

US Army TRADOC Analysis Command-FLVN
ATTN: ATRC-FOA (Technical Info Center)
Fort Leavenworth, KS 66027-5200

US Army Combined Arms Research Library (CARL)
ATTN: ATZL-SWS-L
Fort Leavenworth, KS 66027-5000

US Army TRADOC Analysis Command
ATTN: ATRC
Fort Leavenworth, Kansas 66027-5200

Thru Director TRADOC Analysis Command-FLVN
ATTN: ATRC-F
Fort Leavenworth, Kansas 66027-5200

